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Figure 1. DiVa-360 is a real-world 360◦ multi-view visual dataset of dynamic tabletop scenes captured using a customized low-cost capture
system consisting of 53 RGB cameras. DiVa-360 provides (1) 360◦ coverage of dynamic scenes, (2) foreground-background segmentation
masks, synchronized audio, and detailed text descriptions, and (3) diverse scenes with intricate motions.

Abstract

Advances in neural fields are enabling high-fidelity cap-
ture of the shape and appearance of dynamic 3D scenes.
However, their capabilities lag behind those offered by con-
ventional representations such as 2D videos because of al-
gorithmic challenges and the lack of large-scale multi-view
real-world datasets. We address the dataset limitation in our
CVPR 2024 paper, DiVa-360, a real-world 360◦ dynamic
visual dataset that contains synchronized high-resolution
and long-duration multi-view video sequences of table-scale
scenes captured using a customized low-cost system with
53 cameras. It contains 21 object-centric sequences cate-
gorized by different motion types, 25 intricate hand-object
interaction sequences, and 8 long-duration sequences for
a total of 17.4 M image frames. In addition, we provide
foreground-background segmentation masks, synchronized
audio, and text descriptions. We benchmark the state-of-the-
art dynamic neural field methods on DiVa-360 and provide
insights about existing methods and future challenges on
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long-duration neural field capture.

1. Introduction
Neural fields [64], or neural implicit representations, have re-
cently emerged as useful representations in computer vision,
graphics, and robotics [56, 64] for capturing properties such
as radiance [4, 5, 26, 40, 41], shape [30, 38, 42, 43, 59, 69],
and dynamic motion [8, 16, 29, 34, 36, 45, 58, 60, 62]. Their
high fidelity, continuous representation, and implicit com-
pression [14] properties make them attractive as immersive
digital representations of our dynamic world.

However, despite their popularity, neural fields remain
less capable than conventional representations for repre-
senting dynamic scenes. Though we can easily watch
hours-long 2D videos, this is not yet achievable efficiently
with 3D neural fields due to long training times [3, 9,
15, 26, 28, 29, 36, 54, 58, 60]. We believe that large-
scale, real-world datasets of dynamic scenes with asso-
ciated benchmarks are essential for continued progress in
this problem. While some real-world dynamic datasets
exist [8, 13, 29, 30, 35, 45, 55, 65, 67, 70], they are lim-
ited to room-scale scenes or specific categories like hu-
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Figure 2. Here, we showcase reconstruction results across time steps from PF I-NGP [41], MixVoxels [58], and K-Planes [15] trained on our
dataset. Though PF I-NGP does not directly utilize temporal information, it performs better than MixVoxels and K-Planes. We demonstrate
more visualization results in the supplementary Section 2.

mans [19, 20, 22, 33, 46, 71], or are captured with monoc-
ular or forward-facing cameras that do not always pro-
vide sufficient multi-view cues for immersive reconstruc-
tion [17, 30, 35, 45]. Furthermore, most of the sequences
in these datasets [13, 29, 30, 35, 45, 67, 70] are short, often
less than 15 seconds, limiting their use for building methods
that capture long-duration scenes.

To address these limitations, we present DiVa-360, a real-
world dynamic visual dataset that contains synchronized
high-resolution long-duration table-scale sequences captured
by a 360◦ multi-view camera system (see Figure 1). Our
dataset includes high-resolution (1280×720), high-framerate
(120 FPS), and up to 3 mins long videos captured from
53 RGB cameras spanning 360◦. We provide 46 dynamic
sequences, including 21 object-centric sequences, 25 hand-
object interaction sequences with human routine activities,
and 8 long duration dynamic sequences. In total, DiVa-
360 dynamic dataset contains 17.4 M image frames and
foreground-background segmentation masks of 53 dynamic
scenes over 2738 seconds.

Capturing such large-scale data requires advances in cap-
ture systems and benchmarking metrics. We have built a new
low-cost capture system called BRICS (Brown Interaction
Capture System) which is designed to capture synchro-
nized, high-framerate, and high-fidelity data. In addition,
we propose standardized metrics for reconstruction quality
and runtime, and compare baseline methods on these met-
rics [15, 41, 58]. Surprisingly, we observe that methods that
model each frame in a dynamic sequence without directly
using temporal information [41] outperform state-of-the-art
dynamic methods [15, 58] in terms of reconstruction quality
and even training speed (see Figure 2). To summarize, we
make the following contributions:
• BRICS: A low-cost capture system specifically designed

for 360◦ capture of table-scale dynamic scenes with 53
synchronized RGB cameras.

• DiVa-360 Dataset: The largest dataset (17.4 M frames)
for dynamic neural fields with 21 object-centric sequences
categorized by different motion types, 25 hand-object in-

teraction sequences including routine human activities,
and 8 long-duration dynamic sequences.

• Benchmark & Analysis: We benchmark the dataset with
state-of-the-art methods and enable a better understanding
of the current state of dynamic neural fields.

We believe our work can help the community take a leap
from the current focus on short dynamic videos toward a
more holistic understanding of longer dynamic scenes.

2. Related Work

Neural Fields: Neural fields, or coordinate-based implicit
neural networks, have generated considerable interest in
computer vision [64] because of their ability to represent
geometry [11, 37, 43] and appearance [34, 40, 53]. Neural
radiance fields (NeRF) [40] and its variants [4, 31, 42, 58,
69] uses a multilayer perceptron (MLP) to model density
and color for photorealistic novel view synthesis and 3D
reconstruction. Since the training cost of NeRFs is high,
several methods have tried to address this limitation [10,
26, 41, 49]. Naturally, some approaches have also turned
their focus towards dynamic neural fields [9, 15, 16, 29, 30,
34, 36, 44, 45, 47, 54, 58, 60, 66]. However, due to the lack
of long-duration datasets, these methods have been limited
to brief sequences. Our work enables further research in
long-duration dynamic neural field research with a richer
dataset containing long sequences.
Multi-Camera Capture Systems: Capturing multi-view
data with high resolution and framerate requires specialized
hardware and software systems. The earliest multi-camera
capture systems were extensions of stereo cameras to 5–6
cameras [25], which were later extended to capture a hemi-
spherical volume [24] with up to 50 cameras for 3D and 4D
reconstruction using non-machine learning techniques [57].
The focus of most existing multi-camera capture systems
has been on room-scale scenes for human or environment
capture [23, 72]. While some table-scale datasets exist, no-
tably for hand interaction capture [7, 73], they have only
a limited number of cameras. In contrast, our BRICS sys-



tem is specially designed for dense 53-view visual capture
of table-scale scenes, and our sequences showcase intricate
interactions in high fidelity.
Datasets for Dynamic Neural Fields: While plenty of
datasets exist for NeRF methods [1, 5, 12, 21, 27, 39, 40,
48, 61, 68] their focus has been on static scenes. For dy-
namic scenes, numerous datasets such as DyNeRF [29],
NDSD [70], ILFV [8], NeRF-DS [67], and Deep3DMV [32]
exist, but they are limited to only a short duration (~15s), or
have only forward-facing cameras. BlockNeRF [55] lacks fo-
cus on objects and provides limited views. Eyeful Tower [65]
provides dynamic data up to 2000 s long, but the framerate is
less than 4 FPS. Monocular videos of human faces [44, 45],
human activities [30], or outdoor scene [35] have been
used for neural field reconstructions, but a single camera
restricts visibility resulting in low effective multi-view fac-
tors (EMF)[17]. While Objaverse [13] and SAPIEN [63]
provide articulated objects, they are not sourced from the real
world. Our dataset stands out by offering a 360◦ view of real-
world (non-synthetic) long dynamic sequences of objects
and hand-object interaction captured by 53 synchronized
cameras (see supplementary Table 1 and 2). Furthermore,
each sequence is accompanied by foreground-background
segmentation masks. Hence, we do not need to worry about
the domain gap, the influence from the background, and the
insufficient multiview cues.

3. Brown Interaction Capture System (BRICS)
To capture long-duration sequences of table scale objects and
interactions, we designed and built our own hardware and
software called the Brown Interaction Capture System
(BRICS) which is shown in supplementary Figure 1.
BRICS Hardware: Our system uses an aluminum frame
with fitted panels across each side that contain RGB cameras,
microphones, and LED light strips. For 360◦ capture, we
installed a transparent shelf to place objects. A custom
communication setup that compresses and transmits data to a
control workstation, comprehensive capture capabilities, and
efficient data management all allow for 360◦ view capture
with low latency.
BRICS Software: We design specialized software for man-
aging data and adopt network-based synchronization [2]
with an accuracy of 2-3 ms. For camera calibration, we
capture a single calibration frame with ArUco markers af-
fixed to the wall. We generate camera poses for the 53
cameras using COLMAP [50, 51], and refine them using
I-NGP’s [41] photometric loss for improved reconstruction
quality. Finally, we built software for efficiently transferring
terabytes of data from the control workstation to cloud stor-
age. Our goal is to make this dataset useful for learning
long-duration dynamic neural fields of appearance - existing
methods [3, 9, 15, 28, 29, 36, 54, 58, 60] have been lim-
ited to only short durations (~10s). We fully benchmark all

sequences in our dynamic dataset. In total, DiVa-360 dy-
namic dataset contains 17.4 M image frames and foreground-
background segmentation masks of 53 dynamic scenes over
2738 seconds. To our knowledge, this is the largest-scale
dynamic dataset with a focus on table-scale interactions.

4. DiVa-360 Dataset
Dynamic Objects: We captured 21 dynamic sequences with
everyday objects and toys that move. To be representative of
real-world motions, we chose objects with different types of
motion: (1) Slow motion: objects that perform slow, continu-
ous motions, (2) Fast motion: objects that move or transform
drastically (3) Detailed motion: objects that perform pre-
cise small motions (4) Repetitive motion: objects that repeat
the same motion pattern (5) Random motion: objects that
perform indeterministic motions (see supplementary Table
5).
Interactions: In addition to dynamic objects, we also in-
clude 25 hand-object interaction scenes representing intri-
cate real-world activities. The interactions included are hand
activities commonly observed in everyday life. We hope
these hand-centric interactions encourage future modeling
of complex hand dynamics.
Long-Duration Sequences: Although dynamic objects
and interaction datasets have covered several long-duration
videos, we further provide a long-duration dynamic dataset
with 8 sequences of at least 120 seconds. The existing meth-
ods have shown fast training speeds for 10s long sequences,
but more efficient methods that can operate on longer se-
quences are needed. Hence, this dataset is aimed at enabling
future research in long-duration dynamic neural fields.
Foreground-Background Segmentation: Manually seg-
menting every frame of the sequences is infeasible due to the
quantity and view inconsistency. Therefore, we developed a
segmentation method using I-NGP [41]. For each frame, we
fit an I-NGP model and progressively reduce the bounding
box to ensure the model does not render the walls of BRICS.
The rendering is applied to the raw data as a segmentation
mask, and connected components smaller than a threshold
are removed to refine the result. Since the segmentation is
generated from I-NGP, the masks are multi-view consistent.

5. Benchmarks & Experiments
In this section, we show how DiVa-360 can be used to bench-
mark dynamic neural field methods using standardized met-
rics.

5.1. Benchmark Comparisons

Our goal is to compare state-of-the-art methods for dy-
namic neural field reconstruction on our dataset. Specifi-
cally, we choose three methods: (1) Per-Frame I-NGP (PF
I-NGP) [41], a NeRF model which we train on individual



Baseline PSNR↑ SSIM↑ LPIPS↓ JOD↑ Train (s/f)↓ Render (s/f)↓
PF I-NGP [41] 28.31 ± 3.27 0.94 ± 0.03 0.08 ± 0.04 7.61 ± 0.88 48.70 ± 4.40 0.94 ± 0.25
MixVoxels [58] 27.68 ± 2.51 0.94 ± 0.03 0.09 ± 0.04 7.56 ± 0.94 57.55 ± 6.96 1.48 ± 0.49
K-Planes [15] 26.39 ± 3.13 0.92 ± 0.03 0.19 ± 0.07 7.18 ± 1.08 47.59 ± 5.13 3.03 ± 0.20

Table 1. We compare the rendering quality and train/render time of PF I-NGP, MixVoxels, and K-Planes for dynamic scenes. Surprisingly,
PF I-NGP achieves higher rendering quality and equal or even faster training speed than MixVoxels and K-Planes without directly using
temporal information from the adjacent frames.

frames, (2) MixVoxels [58], a state-of-the-art dynamic neural
radiance field that uses variation fields to decompose scenes
into static and dynamic voxels, and (3) K-Planes [15] which
encourages natural decomposition through planar factoriza-
tion with L1 regularization for space-time decomposition.
Pre-processing: We downsample all our sequences to
30 FPS and then segment all frames following Section 4.
We split all of our sequences into 5-second chunks (150
frames with 30 FPS, except for PF I-NGP, which has chunk
size 1) and then train the above methods per chunk. We
select 35 out of 53 cameras for training, excluding cameras
from the bottom row of the side panels due to reflections
caused by the glass panel in BRICS. We randomly select one
camera from each side for a total of 6 cameras for testing.
Additionally, we undistort the images with OpenCV [6] and
then crop them to 1160× 550.
Results: We quantitatively compare the three methods in
Table 1. Surprisingly, although PF I-NGP is trained on each
frame individually without directly utilizing temporal infor-
mation, its reconstruction quality is better than MixVoxels
and K-Planes in terms of PSNR, SSIM, and LPIPS. How-
ever, PF I-NGP suffers from temporal inconsistency (see
supplementary Figure 4 and 25). Furthermore, PF I-NGP
requires over six times more storage space per time step than
MixVoxels or K-Planes (see supplementary Figure 2 and
3). Although MixVoxels is designed for dynamic scenes, its
training and inference times are higher than PF I-NGP (with
a higher variance). K-Planes has training times similar to
PF I-NGP but has significantly longer inference times. We
also notice that MixVoxels struggles to capture the dynamic
components of the scenes, leading to blurry and noisy recon-
struction (see Figure 2). We hypothesize that this is caused
by insufficient capacities of the dynamic voxels when there
are a lot of dynamic samples. In contrast, K-Planes struggles
to capture the static components, such as the background of
the scenes, especially in the parts where there is little or no
motion. This could be the result of overfitting and contami-
nation from the dynamic planes due to incorrect space-time
decomposition.

5.2. Experimental Analysis

In theory, temporal information can improve the performance
of learning-based methods [18, 52], but benchmark results in

Section 5.1 demonstrate that PF I-NGP outperforms MixVox-
els and K-Planes. To investigate model sensitivity to tem-
poral information, we split the 30-second long sequences
into 2, 3, 6, and 12 chunks and train one dynamic NeRF
model per chunk. We find that Mixvoxels’ performs roughly
the same across different numbers of chunks whereas K-
Planes performs better with more temporal information (see
supplementary Section 3).

Intuitively, neural fields trained with higher-resolution
images should result in better reconstruction quality. To
test this, we compare model performances across different
resolutions (1160×550, 674×320, 464×220). Surprisingly,
we found that the performance of PF I-NGP remains almost
the same whereas MixVoxels and K-Planes perform better
at lower resolutions and suffer from blurry details across all
resolutions (see supplementary Section 3).

6. Conclusion
We have introduced DiVa-360, a real-world 360◦ dynamic
visual dataset that contains synchronized long-duration se-
quences of table-scale moving objects and interactive scenes.
We propose a new BRICS capture system for synchronized
long-duration data capture, which also acts as a rich multi-
modal data capturing system (see supplementary Section 1).
DiVa-360 consists of a dynamic dataset of high-resolution,
high-framerate, long (5s to 3 mins), and synchronized videos
captured simultaneously from 53 RGB cameras within the
capture space. In total, DiVa-360 contains 17.4 M images.
We benchmark the existing state-of-the-art dynamic neu-
ral fields with DiVa-360 dynamic dataset and demonstrate
that there is still room for improvement in terms of training
and rendering speed, hardware requirement, and imbalance
capacity.
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