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1. Design of Brown Interaction Capture System
(BRICS)

Aluminum Frame: To capture table-scale scenes, we chose
a refrigerator-sized aluminum frame (see Figure 1) that
houses a 1 m3 capture volume mounted on wheels for mo-
bility. Each of the 6 side walls of the capture volume is
composed of a 3×3 grid with dual polycarbonate panels on
each grid square (total of 54 squares). Two of the walls are
doors that allow quick access to the capture volume. The
height of the system allows an average person to easily reach
into the volume for interaction capture. A transparent poly-
carbonate shelf in the capture volume allows bottom cameras
to still see objects to provide a 360◦ view. A shelf in the bot-
tom houses power supplies, network switches, and a control
workstation.
Sensor/Illumination Panels: For 53 of the 54 grid squares
(we leave one out for easy access) on the side walls, we
installed translucent polycarbonate panels on the interior
consisting of cameras, microphones, and LEDs. Each panel
can support up to 3 RGB cameras, 3 microphones, and a
fully programmable RGB light strip with 72 individual LEDs.
This panel naturally diffuses the LED lights enabling uni-
form lighting of the volume. In our current setup, each of the
53 panels has an LED strip and 1 off-the-shelf RGB camera
capturing at 1280×720 @ 120 FPS. We install microphones
on 6 panels, one on each side wall of the capture cube.
Communication Panels: The sensor panels collectively
generate more than 13.25 GB/s (0.25 GB/s per panel) of
uncompressed data – well beyond the bandwidth of common
wired communication technologies like USB or ethernet. To
enable the capture and storage of such amounts of data, we
built our own communication system. Briefly, this system
consists of single-board computers (SBCs) that connect to
sensors via USB and are responsible for compressing the data
before sending it to a control station over gigabit ethernet.
With this setup, we are able to simultaneously transmit large
amounts of data with low latency.
Control Workstation: We use a workstation with 52 CPU
cores to simultaneously uncompress, store, and transmit all
the data. To ensure high throughput, we use a 10 Gigabit
ethernet uplink to the SBCs, a PCI solid state drive, and
200 GB RAM for caching.
Panels: BRICS panels are designed to be modular, to allow
for quick customization for different research endeavors.
BRICS consists of 42 panels in total across six sides. Each
side has six square panels of size (9.75 in x 9.75 in) and a
single rectangular middle panel of size (32.25 in x 9.75 in)
that can be changed to consist of three square panels based on

research tasks. The panels inside are white translucent panels
made of TAP plastics Satinice White Acrylic to encourage
light dispersion towards the inside. Outer panels are white
and opaque made of TAP plastics KOMATEX foamed PVC
Sheets.

The inner panels allow the mounting of three different
cameras or other accessories. Although the panel currently
consists of an RGB camera of size (71.5 mm x 71.5 mm)
mounted at the center, future plans include attaching depth
and infrared cameras. All panels are 1/8th inch in thickness.
Mounts: We utilize custom-designed mounts to attach cam-
eras to the panels. We use custom-designed ball bearing
mounts, that are rotatable to allow for changing the camera
orientation.
Lighting: We use BTF-Lighting WS2812-B individually
addressable RGB lighting strips. This allows for highly cus-
tomized lighting conditions and environment maps. More-
over, using LED strips allows us to add additional lighting
quickly.

Each panel has 70 LED’s placed in between the inner
panel and outer panel. These LED’s are powered individually
and sequentially connected for data. The LED’s are all
controlled with six Raspberry Pi 3 Model B+ computers, one
for each side. To control the LED’s we used the standard
NeoPixel python library. Furthermore, each side allows for
individual brightness control.
Cameras: We used off-the-shelf USB 2.0 cameras that can
capture 1280×720 @ 120 FPS. Specifically, we used the
ELP-SUSB1080P01-LC1100 from ELP Cameras.
Single Board Computers (SBCs): We need the single
board computers to have enough processing power and USB
ports to support up to 3 cameras and 1 microphone each. For
this reason and easy market availability, we chose the Odroid
N2+ 4 GB, which was sufficient for our purpose.

2. Dynamic Dataset Benchmark Comparison

Pre-processing: To do a benchmark, we pre-process the
raw data captured through BRICS following Section 5.
Baselines Training: Per-Frame I-NGP (PF I-NGP) sequen-
tially learns a model for each time step. Each I-NGP [11] is
initialized from the model of the previous time step. The PF
I-NGP allows us to fit the dynamic video efficiently while
not considering the motion between frames. In addition,
the streamable training feature also allows us to optimize
the camera pose and lens distortion individually for each
frame. We train each I-NGP for 5000 iterations. The average
training time for each I-NGP is 48.7 seconds with a standard
deviation of 4.4 seconds. The smaller standard deviation



Figure 1. (a) BRICS is a refrigerator-sized aluminum frame that supports a 1 m3 capture volume mounted on wheels for mobility. Each side
wall of the capture volume is divided into a 3×3 grid, with each grid square containing sensors, LEDs, single-board computers (SBCs), and
light diffusers. (b) Two walls of the capture volume act as doors for easy access to the capture volume. (c) We can acquire 360◦ RGB views
of dynamic objects and intricate hand-object interactions in this capture volume (6 views shown).

Dataset Real Mask 360◦ view Multiview Object Scene

HyperNeRF [12] ✓ ✗ ✗ ✗ ✗ ✓
OMMO [10] ✓ ✗ ✗ ✗ ✗ ✓
Block-NeRF [14] ✓ ✗ ✗ ✓ ✗ ✓
Eyeful Tower [16] ✓ ✗ ✗ ✓ ✗ ✓
DyNeRF [7] ✓ ✗ ✗ ✓ ✗ ✓
ILFV [3] ✓ ✗ ✗ ✓ ✗ ✓
Deep3DMV [9] ✓ ✗ ✗ ✓ ✗ ✓
NeRF-DS [17] ✓ ✓ ✗ ✓ ✗ ✓
NDSD [18] ✓ ✓ ✗ ✓ ✗ ✓

D-NeRF [13] ✗ — ✓ ✗ ✓ ✗

Objaverse [4] ✗ — ✓ ✓ ✓ ✓
DiVa-360 ✓ ✓ ✓ ✓ ✓ ✓

Table 1. We compare featured properties of our DiVa-360 with other
object-centric and scene-centric datasets. DiVa-360 is a unique
dataset that contains real-world 360◦ multiview object-centric and
scene-centric data with foreground-background masks.

Dataset #Camera FPS #Scenes #Frames Average length (s)

Objaverse [4] — — 3k — —
NeRF-DS [17] 2 — 8 10.2k —
Block-NeRF [14] 12 10 1 12k 100*

HyperNeRF [12] 1 15 17 13.8k 27
OMMO [10] 1 — 33 14.7k —
Eyeful Tower [16] 22 < 4 11 28.6k 2k†

DyNeRF [7] 18 30 6 37.8k 10
ILFV [3] 46 30 15 270.4k 13
Deep3DMV [9] 10 120 96 3.8M 33
DiVa-360 53 120 54 17.4M 51

Table 2. Specifications of our DiVa-360 dataset and other dynamic
datasets. ∗ indicates that despite Block-NeRF consisting of a 100s-
long video, it is made up of numerous transient street scenes, each
with restricted view coverage. † indicates that although the average
length of Eyeful Tower is 2000 s, the FPS is less than 4. Our DiVa-
360 dataset is the largest visual dataset for dynamic neural fields
captured at 120 FPS with an average video length of 51 s.

is due to the fact that PF I-NGP does not consider motion.
However, this will lead to temporal inconsistency, which is
especially obvious at static parts when comparing PF I-NGP
with MixVoxels [15] and K-Planes [5]. In Figure 4 and Fig-
ure 25, we concatenate the pixels from the line across frames
in the same view and demonstrate that PF I-NGP contains

much white noise and is less temporal smooth.
MixVoxels [15] is trained to capture the dynamic video

every 150 frames. We train each MixVoxels for 25000 it-
erations. We lower the dynamic threshold to capture more
dynamic samples for scenes with drastic motion. Although
MixVoxels is trained and benchmarked with black back-
grounds, we render it with white backgrounds for all figures
in the paper. This will make the floaters of MixVoxels darker
in the figures. Unlike PF I-NGP, MixVoxels allows us to
learn a dynamic NeRF with motion. In addition, MixVoxels
trained with multiple frames also encourage temporal consis-
tency (see Figure 25), which is absent in PF I-NGP. However,
MixVoxels struggles to capture dynamic parts with complex
motion and small dynamic objects. Hence, in Figure 21,
we can observe many floaters and noise around the hand
of Chess, and cannot see the small train in the Music Box
and holes of knitted fabric in the Crochet. We assume the
noise and floaters are caused by the insufficient capacity of
the dynamic branch when receiving too many dynamic sam-
ples. The small objects and fine-grained details are missed
because the variation field fails to decompose the scene cor-
rectly. For each time step, the average training time is 57.55
seconds, with a standard deviation of 6.96 seconds. The
large standard deviation is because MixVoxels will sample
more dynamic points for its dynamic branch when learning
a scene with complex motion.

For a fair comparison, we also train a K-Planes every
150 frames. We train each K-Planes for 90000 iterations.
Similar to the MixVoxels, K-Planes is also more tempo-
rally consistent. This is especially obvious in Chess and Put
Fruit of Figure 25. K-Planes sometimes fails to reconstruct
static parts and tends to generate many floaters, especially
for objects with slow motion such as Music Box. Addition-
ally, it misses the fine-grained details of the knitted crochet
in Figure 21. This could be the result of overfitting and
contamination from the dynamic planes due to weaker de-
composition. For each time step, the average training time
is 47.59 seconds with a standard deviation of 5.13 seconds.
Although the training time of K-Planes is faster than PF I-



Types Baseline PSNR↑ SSIM↑ LPIPS↓ JOD↑

Dynamic objects
PF I-NGP [11] 29.62 / 4.42 0.95 / 0.02 0.06 / 0.02 7.53 / 1.28
MixVoxels [15] 28.43 / 2.87 0.95 / 0.02 0.06 / 0.03 7.48 / 1.31

K-Planes [5] 26.62 / 4.41 0.91 / 0.04 0.21 / 0.09 6.66 / 1.47

Interactions
PF I-NGP 26.89 / 1.76 0.94 / 0.03 0.09 / 0.04 7.68 / 0.51
MixVoxels 26.45 / 1.91 0.93 / 0.03 0.10 / 0.04 7.50 / 0.70
K-Planes 26.18 / 2.08 0.93 / 0.03 0.17 / 0.06 7.55 / 0.49

Long-duration Sequences
PF I-NGP 29.35 / 0.90 0.93 / 0.03 0.10 / 0.03 7.60 / 0.57
MixVoxels 29.62 / 0.75 0.93 / 0.02 0.11 / 0.02 7.87 / 0.29
K-Planes 26.45 / 1.86 0.92 / 0.02 0.21 / 0.04 7.27 / 0.68

Table 3. Rendering quality (mean / standard deviation) of dynamic objects, interactions, and long duration sequences respectively using PF
I-NGP[11], MixVoxels.[15], and K-Planes [5]. Although the PSNR of PF I-NGP is much better than MixVoxels in terms of dynamic objects,
the PSNR of PF I-NGP is similar to the MixVoxels for interactions and even underperforms MixVoxels for long-duration sequences. This
indicates that it is hard to capture the scene occluded by hands and maintain the temporal consistency, especially for static parts such as the
chessboard, without utilizing the temporal information. Unlike PF I-NGP and MixVoxels, the performance of K-Planes is more consistent
across the three types.

NGP and MixVoxels without considering standard deviation,
K-Planes shows the slowest rendering speed among them.

Table 3 separately shows quantitative results of dynamic
objects, interactions, and long-duration sequences. PF I-
NGP, MixVoxels, and K-Planes perform better with dynamic
objects than interactions. One reason is that models trained
on dynamic objects do not need to handle occlusion caused
by the hands. Another reason is that hand motion is more
complex. The PSNR gap of PF I-NGP is 2.73 dB, the
PSNR gap of MixVoxels is 1.98 dB, and the PSNR gap
of K-Planes is 0.44 dB. The performance gap between dy-
namic objects and interactions is more obvious with PF
I-NGP because it does not utilize temporal information and,
therefore, cannot handle occlusion well. A similar situation
happens to PF I-NGP when comparing dynamic objects with
long-duration sequences. However, this situation does not oc-
cur with MixVoxels when comparing dynamic objects with
long-duration sequences, which also capture hand-object
interaction scenes but longer. This is because the scenes
of long-duration sequences often contain a large portion of
static parts, such as the chessboard in the Chess Long (see
Figure 14). MixVoxels can largely benefit from this kind
of sequence because the independent static branch of the
MixVoxels can handle static parts smoothly across frames.
Interestingly, this allows MixVoxels to outperform PF I-NGP,
which is less temporally smooth across these frames (see
Figure 25). Unlike PF I-NGP and MixVoxels, the perfor-
mance of K-Planes is robust across three types because of
the relatively soft static dynamic decomposition.

Dynamic Object Results: Table 4 shows the performance
of PF I-NGP, MixVoxels, and K-Planes in different motion
types. We manually classified the 21 dynamic object se-

quences into five overlapping categories: slow, fast, detailed,
repetitive, and random (Table 5). Although PF I-NGP does
not consider motion, it serves as a baseline for dynamic
models by fitting each frame separately.

All baselines perform slightly better on detailed motions.
However, a gap exists between MixVoxels and PF I-NGP’s
quantitative results, suggesting that MixVoxels can capture
the static background but struggles to capture detailed motion
(e.g. the second hand of the Clock in Figure 7 disappears).
Unlike MixVoxels, K-Planes partially reconstructs the sec-
ond hand but fails to reconstruct the static part well (e.g., the
clock’s body). This leads to a larger performance gap be-
tween K-Planes and PF I-NGP. Slow and repetitive motions
are the two categories that MixVoxels’ results are the closest
to PF I-NGP’s while the performance gaps are larger in fast
and random motions. In other words, MixVoxels can suc-
cessfully capture dynamic information when the motion is
continuous and gradual but cannot generalize well to drastic
motion. For example, the Horse in Figure 5 and the Penguin
in Figure 8 are clean, while the Blue Car in Figure 6 and the
Wolf in Figure 9 miss fine-grained details or parts. Fast and
random motions are the two categories that K-Planes’ results
are the closest to PF I-NGP’s while the performance gaps
are larger in slow and repetitive motions. In other words,
K-Planes can construct scenes of drastic motion with fewer
artifacts but may produce more artifacts, such as floaters
for mild motion. For instance, the Dog in Figure 6 and the
Wolf in Figure 9 contain fewer floaters and artifacts than
the Horse in Figure 5 and the Stirling Engine in Figure 8.
Together with the quantitative results (Table 6), the visualiza-
tion results suggest that PF I-NGP can successfully capture
most of the scene, whereas Mixvoxels and K-Planes struggle



Baseline Motion PSNR↑ SSIM↑ LPIPS↓ JOD↑

PF I-NGP [11]

Slow 29.76 / 2.18 0.96 / 0.02 0.05 / 0.03 7.13 / 2.57
Fast 30.06 / 5.15 0.95 / 0.01 0.06 / 0.02 7.60 / 0.60

Detailed 33.11 / 7.81 0.96 / 0.02 0.07 / 0.03 6.74 / 2.35
Repetitive 28.76 / 2.16 0.96 / 0.02 0.06 / 0.02 7.75 / 0.71
Random 31.59 / 8.95 0.95 / 0.01 0.07 / 0.02 6.74 / 2.34

MixVoxels [15]

Slow 29.64 / 2.14 0.96 / 0.02 0.05 / 0.03 7.58 / 2.52
Fast 28.39 / 3.09 0.95 / 0.02 0.07 / 0.02 7.41 / 0.73

Detailed 30.25 / 3.95 0.96 / 0.02 0.06 / 0.03 6.59 / 2.57
Repetitive 28.37 / 2.35 0.94 / 0.02 0.09 / 0.02 6.94 / 0.72
Random∗ 27.89 / 5.75 0.95 / 0.02 0.07 / 0.03 5.91 / 1.99

K-Planes [5]

Slow 25.18 / 2.05 0.88 / 0.03 0.31 / 0.03 6.10 / 1.03
Fast 26.99 / 5.23 0.92 / 0.05 0.18 / 0.09 6.73 / 1.63

Detailed 27.91 / 8.54 0.88 / 0.05 0.26 / 0.10 5.68 / 1.54
Repetitive 25.43 / 2.78 0.91 / 0.05 0.23 / 0.10 6.47 / 1.60
Random 30.86 / 6.02 0.92 / 0.04 0.19 / 0.07 6.65 / 1.38

Table 4. Rendering quality (mean / standard deviation) of dynamic objects using PF I-NGP[11], MixVoxels[15] and K-Planes[5] in terms of
different types of motion. * indicates that the results do not include the Plasma Ball Clip sequence because the codebase cannot handle
that scene. PF I-NGP serves as a baseline without considering temporal information. Compared with PF I-NGP, the PSNR of MixVoxels
decreases by 0.12 dB, 1.67 dB, 2.86 dB, 0.39 dB, and 3.7 dB for slow, fast, detailed, repetitive, and random motion, respectively. MixVoxels
perform better on scenes with slow and repetitive motion while worse on scenes with drastic motion. Compared with PF I-NGP, the PSNR
of K-Planes decreases by 4.58 dB, 3.07 dB, 5.2 dB, 3.33 dB, and 0.73 dB for slow, fast, detailed, repetitive, and random motion, respectively.
K-Planes perform better on scenes with fast and random motion while worse on scenes with less drastic motion.

to generalize to different types of motions and may need
hyperparameter tuning to fit scenes with different motion
types.

Interaction Results: Our interaction scenes, which cover
several human daily activities such as flipping a book in
Figure 11, require the model to capture a sequence of real-
istic motions. For example, the Battery scene in Figure 10
contains the motion of using a screwdriver to open the toy’s
battery cover, putting in the batteries, assembling the cover
back, and turning on the toy. We consider the interaction data
as more challenging cases for neural radiance fields because
of the occlusion and complex motion from the hands. Ta-
ble 8 demonstrates all results of PF I-NGP, MixVoxels, and
K-Planes on interaction scenes. Overall, the performances
of these three baselines are similar across interaction scenes.
PF I-NGP performs robustly across most of the scenes while
failing to totally reconstruct the cover of the book in Fig-
ure 11 and produces scratches on the hand in Figure 12.
MixVoxels reconstructs blurrier texts in Figure 11, and a few
floaters around the hand in Figure 13. K-Planes reconstructs
many floaters around the hand and objects in Figures 10,
12 and 13, misses the text in Figure 11, distorts the hand
in Figure 10, and produces white scratches on the hand in
Figure 12. We hope that our interaction dynamic dataset
can open a new direction and provide a new understanding

for hand object interaction tasks [2] in the future. Notably,
visualization results show black artifacts in Figure 10 and
Figure 13 in MixVoxels renderings. This effect is not observ-
able in numerical results because all models except K-Planes
are trained and evaluated with black backgrounds. We used
white backgrounds for rendering to better visualize the re-
sults.

Long duration Results: Although our object and inter-
action datasets contain several long videos, we propose a
long-duration dataset that only includes videos that are at
least 2 minutes long (see Figure 26). Table 12 details the
rendering quality of PF I-NGP, MixVoxels, and K-Planes on
each scene of the long-duration data. Surprisingly, MixVoxls
outperforms PF I-NGP in many scenes of the dataset. This
is because many scenes of the dataset contain large static
parts such as a chessboard in the Chess Long, and the tray
in the Jenga Long, Legos, Origami, Painting, and Puzzle.
MixVoxels is good at maintaining the consistency of the
static parts across frames, while PF I-NGP cannot (see Fig-
ure 25). Figure 15 demonstrates that PF I-NGP still provides
more fine-grained details, such as the holes of fabrics in Cro-
chet, than MixVoxels and K-Planes. Figure 14 shows that
MixVoxels performs better at static parts like the chessboard
while K-Planes performs better at dynamic parts such as the
hand.



Scene Slow Fast Detailed Repetitive Random Size L×W×H (cm)

blue car ✗ ✓ ✗ ✓ ✗ 23.20 × 9.50 × 5.20
bunny ✗ ✓ ✗ ✓ ✗ 33.02 × 27.94 × 19.05
clock ✓ ✗ ✓ ✗ ✗ 30.48 × 30.48 × 4.57
dog ✗ ✓ ✗ ✗ ✓ 27.00 × 11.99 × 27.00

horse ✓ ✗ ✗ ✓ ✗ 11.50 × 7.60 × 13.50
hourglass ✓ ✗ ✓ ✗ ✓ 7.00 × 7.00 × 17.00

k1 double punch ✗ ✓ ✗ ✓ ✗ 9.80 × 17.20 × 35.00
k1 handstand ✗ ✓ ✗ ✗ ✗ 9.80 × 17.20 × 35.00
k1 push up ✗ ✓ ✗ ✓ ✗ 9.80 × 17.20 × 35.00
music box ✓ ✗ ✗ ✓ ✗ 10.80 × 10.80 × 12.60
penguin ✗ ✗ ✗ ✓ ✗ 24.69 × 27.00 × 13.77

plasma ball ✗ ✓ ✓ ✗ ✓ 15.00 × 15.00 × 24.10
plasma ball clip ✗ ✓ ✓ ✗ ✓ 15.00 × 15.00 × 24.10

red car ✗ ✓ ✗ ✓ ✗ 22.50 × 9.20 × 5.20
stirling ✗ ✓ ✓ ✓ ✗ 9.00 × 9.00 × 13.00
tornado ✗ ✓ ✗ ✓ ✗ 11.00 × 11.00 × 27.50

trex ✗ ✓ ✗ ✗ ✗ 30.50 × 7.50 × 20.50
truck ✗ ✓ ✗ ✗ ✗ 17.80 × 7.10 × 7.30
wall-e ✗ ✓ ✗ ✗ ✗ 35.56 × 20.32 × 27.94
wolf ✗ ✗ ✗ ✓ ✓ 17.78 × 12.70 × 35.56

world globe ✓ ✗ ✗ ✓ ✗ 13.97 × 13.97 × 19.81

Table 5. Motion types and object size (cm) of each dynamic object. Objects are split into 5 overlapping categories: slow, fast, detailed,
repetitive, and random motion.

Scene
PF I-NGP / MixVoxels / K-Planes

PSNR↑
PF I-NGP / MixVoxels / K-Planes

SSIM↑
PF I-NGP / MixVoxels / K-Planes

LPIPS↓
PF I-NGP / MixVoxels / K-Planes

JOD↑
blue car 29.833 / 29.485 / 28.304 0.957 / 0.955 / 0.962 0.047 / 0.049 / 0.059 7.951 / 8.097 / 8.581
bunny 26.491 / 24.983 / 27.244 0.941 / 0.928 / 0.935 0.085 / 0.098 / 0.176 7.905 / 7.407 / 7.790
clock 28.943 / 28.682 / 21.972 0.935 / 0.934 / 0.868 0.108 / 0.100 / 0.299 7.810 / 9.026 / 6.833
dog 25.463 / 23.233 / 29.483 0.949 / 0.929 / 0.949 0.085 / 0.100 / 0.143 7.754 / 6.350 / 8.405

horse 31.869 / 31.724 / 25.940 0.982 / 0.980 / 0.878 0.023 / 0.023 / 0.333 8.736 / 8.910 / 5.816
hourglass 27.244 / 27.468 / 27.559 0.970 / 0.976 / 0.930 0.054 / 0.027 / 0.261 2.572 / 3.100 / 7.477

k1 double punch 27.422 / 27.208 / 23.190 0.938 / 0.938 / 0.917 0.070 / 0.068 / 0.202 6.733 / 6.421 / 6.832
k1 handstand 27.631 / 26.795 / 23.178 0.936 / 0.930 / 0.906 0.072 / 0.078 / 0.180 7.233 / 7.377 / 5.945
k1 push up 27.393 / 27.326 / 22.345 0.936 / 0.935 / 0.889 0.072 / 0.072 / 0.230 6.886 / 7.439 / 5.006
music box 32.225 / 32.129 / 24.862 0.980 / 0.979 / 0.871 0.031 / 0.028 / 0.329 8.444 / 8.636 / 5.004
penguin 27.034 / 26.675 / 28.504 0.950 / 0.950 / 0.949 0.074 / 0.068 / 0.165 8.182 / 8.291 / 8.338

plasma ball 33.422 / 36.102 / 29.145 0.944 / 0.955 / 0.857 0.072 / 0.060 / 0.273 7.368 / 6.372 / 5.048
plasma ball clip 46.476 / — / 41.437 0.968 / — / 0.940 0.049 / — / 0.108 8.139 / — / 5.502

red car 30.844 / 30.342 / 28.626 0.961 / 0.960 / 0.962 0.046 / 0.050 / 0.111 8.020 / 8.161 / 8.352
stirling 29.473 / 28.744 / 19.415 0.966 / 0.963 / 0.810 0.045 / 0.037 / 0.372 7.808 / 7.868 / 3.550
tornado 28.629 / 28.825 / 24.427 0.965 / 0.966 / 0.886 0.045 / 0.043 / 0.309 6.398 / 6.815 / 6.164

trex 28.496 / 28.057 / 24.976 0.948 / 0.947 / 0.935 0.056 / 0.058 / 0.148 8.257 / 8.172 / 6.266
truck 31.033 / 30.654 / 30.431 0.969 / 0.967 / 0.973 0.038 / 0.044 / 0.064 8.418 / 8.412 / 8.849
wall-e 28.164 / 27.263 / 25.694 0.934 / 0.923 / 0.936 0.085 / 0.114 / 0.134 7.597 / 7.399 / 7.933
wolf 25.341 / 24.764 / 26.683 0.940 / 0.935 / 0.932 0.089 / 0.094 / 0.183 7.855 / 7.810 / 6.800

world globe 28.529 / 28.175 / 25.560 0.953 / 0.955 / 0.874 0.052 / 0.047 / 0.322 8.063 / 8.243 / 5.372

Table 6. Rendering quality of all dynamic objects using PF I-NGP [11], MixVoxels [15] and K-Planes [5]. PF I-NGP and MixVoxels are
evaluated with black backgrounds. K-Planes is evaluated with white backgrounds.

3. Dynamic Dataset Experiments

In this section, we provide more discussion for the experi-
ments in Section 5.2 of the paper. For the experiments, we

select sequences longer than 30 seconds from the object and
interaction dataset. We then use the first 30 seconds (900
frames) of these sequences for the following experiments.



Figure 2. The rendering quality across different numbers of chunks
with object and interaction data. The circle dot presents the storage
space of the models in GB. MixVoxels prefers less temporal infor-
mation, while K-Planes prefers more temporal information.

Figure 3. The rendering quality across different numbers of chunks
with interaction data only. The circle dot presents the storage space
of the models in GB. K-Planes outperforms MixVoxels with more
temporal information on complex motion data.

Temporal Information: Figure 2 shows that MixVoxels per-
forms roughly the same across different numbers of chunks,
but is slightly better when trained with less temporal informa-
tion (more chunks). The dynamic branch of MixVoxels may
not have sufficient capacity to handle more dynamic samples.
Unlike MixVoxels, K-Planes is more sensitive to sequence
lengths and performs better with more temporal informa-
tion. Through the rendering results, we found that fewer
chunks also mitigate the overfitting problem of K-Planes
on DiVa-360 (Figure 16). One interesting finding is that
although MixVoxels outperforms K-Planes with object and
interaction data, K-Planes outperforms MixVoxels with 2
and 3 chunks setting on interaction data (see Figure 3). This
indicates that K-Planes can better handle the more complex
motions in the interaction data when provided with more
temporal information.

Figure 16 demonstrates the visualization results of
MixVoxels and K-Planes when trained with different num-

bers of chunks. Notably, more chunks indicate a shorter
temporal length per model and less temporal information.
Visualization results of MixVoxels show less noise when
the number of chunks increases, while K-Planes’ results
show the opposite. Hence, the visualization results support
that MixVoxels prefers a shorter temporal length per model,
while K-Planes prefers a longer temporal length per model.
Spatial Information: We train the three methods on lower
resolutions by downscaling the training set from 1160× 550
(undistorted images) to 674 × 320 and 464 × 220. After
training, we evaluate the trained models by rendering test
views at the original resolution (see Table 7 and Figure 17).
To our surprise, we found that the performance of PF I-NGP
remains almost the same, and rendering results have apparent
fine-grained details. Furthermore, MixVoxels and K-Planes
perform better at lower resolution, with MixVoxels perform-
ing the best at 674× 320 and K-Planes performing the best
at 464 × 220. Both methods suffer from similarly blurry
details across all resolutions. This interesting result contra-
dicts our hypothesis, and there could be several reasons for
it. First, NeRFs have shown impressive spatial interpola-
tion ability leading to only a minimal drop in performance
with reducing resolution. Second, under the same training
setting, NeRFs will revisit the training samples more fre-
quently when trained on lower-resolution images and thus
reconstruct these samples better. Finally, dynamic NeRFs
need to spend much more of their capacities to capture mov-
ing objects which could result in insufficient capacity to
capture fine-grained details. In conclusion, we suspect that
current dynamic methods cannot efficiently utilize spatial
information in high-resolution images as they are biased to-
ward motion and misses the high-frequency details presented
in the images. In addition, we note that human perception
of these images may not match the observed quantitative
results [1].

From Figure 17, firstly, we notice that the spatial inter-
polation ability of the neural radiance field is impressive.
The visualization of PF I-NGP and MixVoxels are almost
the same across three resolutions, but they start missing fine-
grained details, such as the stripes of the Bunny’s clothes in
the lowest resolution setting. This indicates that the perfor-
mance drop won’t happen if the resolution is acceptable for
neural radiance fields. Secondly, we found that the recon-
struction results of MixVoxels and K-Planes do not miss any
parts of the object but are similarly blurry across all three
settings. This suggests that current dynamic NeRFs may be
biased towards capturing the shape of moving objects, po-
tentially sacrificing the ability to capture details. Finally, the
floaters generated from K-Planes start disappearing when the
resolution gets lower. This is because K-Planes can revisit
the same training samples frequently under the same training
setting.
Spatial and Temporal Information: In the previous exper-



Figure 4. Visualization of temporal consistency in the same views by concatenating pixels from the same line across time steps. If a method
is temporally consistent, its figure should be smooth horizontally and similar to the ground truth. PF I-NGP is less consistent across time,
especially for static parts (e.g., drum), while MixVoxels is noisier on the dynamic parts (e.g., wolf’s body).

Baseline 1160× 550 674× 320 464× 220

PF I-NGP [11] 28.16 28.19 28.15
MixVoxels [15] 27.63 27.75 26.91
K-Planes [5] 25.38 25.57 26.03

Table 7. The PSNR of each baseline across different resolutions.
During testing, we interpolate the images to 1160× 550 resolution.
The performance of PF I-NGP remains similar. MixVoxels and
K-Planes get slightly better performance with the low-resolution
training set.

iment, we only have one control variable, spatial resolution
or temporal length. It is unclear whether the same conclu-
sion will hold if we change spatial resolution and temporal
length simultaneously. Hence, in this experiment, we change
spatial resolution and temporal length simultaneously while
maintaining a similar size of the 3D volume (width x height x
temporal length). Table 9 shows MixVoxels performs worst,
and K-Planes performs best with the lowest spatial resolution
and longer temporal length setting (464× 220, 900 frames).
This matches our findings in the previous experiments. If
we check Table 7 and Table 9 together, the phenomenon is
more obvious. The PSNR of MixVoxels drops from 27.75
to 27.2 and 26.91 to 26.1 for spatial resolution 674 × 320
and 464× 220, respectively, after including more temporal
information. The PSNR of K-Planes increases from 25.57
to 26.04 and 26.03 to 26.19 for spatial resolution 674× 320
and 464× 220, respectively, after including more temporal
information.

In Figure 18, the reconstruction results of MixVoxels are
blurrier (the hand in Scissor) and incomplete (the bear’s
ears in Horse) on the lowest resolution and more temporal
information settings. Although the reconstruction results
of K-Planes are slightly blurrier (the hand in Scissor), the
reconstructions are complete (the Horse’s head) and have
fewer floaters with the lowest resolution and more temporal
information setting. These match our previous experiment
results where we only control one of these factors at a time.

4. Dataset Justification
In this section, we justify the need for our 360◦ views with
53 cameras, and other design choices.

Number of Cameras: For evaluating the number of cam-
eras, we compare three settings: (1) All-view, which follows
the original setting with all cameras, (2) Forward, which
only uses the cameras from two adjacent side panels, result-
ing in 10 cameras, (3) Multi-view, which uses two cameras
per side panel and one camera from top and bottom panel,
resulting in 10 cameras.

Both quantitative and qualitative results (see Table 10,
Figure 19, Figure 20) demonstrate that All-view outperforms
Multi-view, indicating that more cameras improve the render-
ing quality of NeRFs. In addition, All-view and Multi-view
outperform Forward when tested on an occluded view, sug-
gesting that multi-view 360◦ is better than forward-facing
settings for benchmarking.

In Figures 19 and 20, PF I-NGP, MixVoxels, and K-Planes
can reconstruct World Globe and Wolf better with All-view
than Multi-view. This indicates that the number of cam-
eras covering the bounding space is significant. PF I-NGP,
MixVoxels, and K-Planes can reconstruct World Globe and
Wolf better with All-view and Multi-view than Forward re-
garding the occluded view. Hence, 360◦ setting is necessary
to reconstruct the objects with the correct color completely.
Through the visualization results of Forward, we observe
that MixVoxels tends to render unknown occluded parts with
a black background color, while PF I-NGP and K-Planes
show better novel view synthesis ability for occluded view.

5. Foreground-Background Segmentation
Method

In Section 4 of the main paper, we mention that we use I-
NGP to segment each frame. Although the segmentation
model can be replaced with improved models in the future,
we believe that our current method is suitable for DiVa-360,
especially due to its multiview consistency. To validate the
performance of I-NGP segmentation, we compare it against
Segment Anything (SAM) [6] in terms of segmentation qual-
ity and multiview consistency. For this benchmark, we man-
ually segment one frame of 6 random views from all scenes
as ground truth and compute mean intersection over union
(mIoU) for images segmented by SAM and our method.

According to Table 11, I-NGP segmentation reaches bet-
ter mIoU and lower average standard deviation over six



Scene PF I-NGP / Mixvoxels / K-Planes PF I-NGP / Mixvoxels /K-Planes PF I-NGP / Mixvoxels / K-Planes PF I-NGP / Mixvoxels / K-Planes
PSNR↑ SSIM↑ LPIPS↓ JOD↑

battery 26.828 / 25.805 / 24.351 0.931 / 0.902 / 0.923 0.088 / 0.128 / 0.169 7.483 / 6.729 / 7.404
chess 22.945 / 20.799 / 22.274 0.821 / 0.807 / 0.865 0.215 / 0.233 / 0.267 6.756 / 5.932 / 7.691
drum 24.662 / 23.784 / 22.299 0.903 / 0.894 / 0.880 0.136 / 0.148 / 0.253 7.703 / 6.663 / 7.199

flip book 26.303 / 24.367 / 25.826 0.928 / 0.904 / 0.920 0.120 / 0.150 / 0.198 7.347 / 5.750 / 8.093
jenga 29.683 / 28.884 / 30.992 0.972 / 0.962 / 0.973 0.046 / 0.063 / 0.087 8.583 / 8.281 / 8.284

keyboard mouse 29.635 / 29.153 / 24.734 0.926 / 0.926 / 0.915 0.102 / 0.101 / 0.204 7.808 / 7.777 / 6.910
kindle 29.556 / 28.585 / 25.796 0.958 / 0.951 / 0.943 0.069 / 0.087 / 0.169 8.237 / 7.969 / 6.816

maracas 26.083 / 26.300 / 27.352 0.953 / 0.949 / 0.960 0.072 / 0.081 / 0.085 7.659 / 7.575 / 8.312
pan 27.392 / 26.759 / 24.803 0.935 / 0.918 / 0.937 0.094 / 0.116 / 0.153 7.003 / 6.996 / 7.532

peel apple 27.270 / 27.205 / 26.108 0.939 / 0.942 / 0.934 0.086 / 0.089 / 0.184 7.843 / 7.728 / 7.595
piano 26.824 / 26.097 / 23.879 0.929 / 0.925 / 0.886 0.104 / 0.099 / 0.257 7.719 / 8.438 / 7.013
poker 27.786 / 27.736 / 29.137 0.958 / 0.954 / 0.960 0.062 / 0.068 / 0.095 8.298 / 8.143 / 8.409

pour salt 25.845 / 25.729 / 24.702 0.919 / 0.919 / 0.903 0.104 / 0.111 / 0.225 7.714 / 7.311 / 7.622
pour tea 26.071 / 25.775 / 27.626 0.946 / 0.941 / 0.950 0.089 / 0.094 / 0.144 7.447 / 6.951 / 7.607

put candy 28.189 / 27.360 / 25.870 0.950 / 0.943 / 0.940 0.071 / 0.078 / 0.162 7.906 / 7.836 / 6.737
put fruit 27.129 / 26.614 / 26.546 0.935 / 0.931 / 0.938 0.089 / 0.097 / 0.141 7.815 / 7.389 / 7.456
scissor 25.346 / 25.090 / 25.883 0.944 / 0.937 / 0.936 0.076 / 0.086 / 0.168 7.854 / 7.563 / 7.685

slice apple 26.026 / 25.014 / 26.692 0.951 / 0.940 / 0.939 0.106 / 0.118 / 0.218 7.829 / 7.515 / 7.948
soda 28.780 / 28.727 / 27.115 0.964 / 0.959 / 0.936 0.059 / 0.067 / 0.184 8.322 / 8.091 / 7.704

tambourine 27.985 / 27.624 / 27.482 0.972 / 0.965 / 0.968 0.044 / 0.049 / 0.100 7.634 / 7.455 / 7.227
tea 27.410 / 26.808 / 28.202 0.956 / 0.946 / 0.962 0.073 / 0.088 / 0.099 7.723 / 7.268 / 7.946

unlock 28.649 / 29.275 / 29.967 0.971 / 0.966 / 0.974 0.045 / 0.058 / 0.070 8.158 / 8.243 / 8.441
writing 1 24.086 / 25.145 / 25.630 0.916 / 0.926 / 0.926 0.158 / 0.163 / 0.236 6.725 / 7.789 / 7.222
writing 2 24.345 / 25.613 / 25.782 0.930 / 0.934 / 0.926 0.146 / 0.148 / 0.242 6.490 / 7.983 / 7.604

xylophone 27.334 / 26.951 / 25.449 0.950 / 0.948 / 0.916 0.068 / 0.066 / 0.206 7.950 / 8.103 / 7.094

Table 8. Rendering quality of all dynamic interaction scenes using PF I-NGP[11], MixVoxels[15] and K-Planes[5]. PF I-NGP and MixVoxels
are evaluated with black backgrounds. K-Planes is evaluated with white backgrounds.

Baseline 1160× 550, 6 ch. 674× 320, 2 ch. 464× 220, 1 ch.

MixVoxels [15] 27.63 27.20 26.10
K-Planes [5] 25.38 26.04 26.19

Table 9. The PSNR of each baseline across different spatial reso-
lutions and temporal lengths. MixVoxels reaches the worst perfor-
mance, and K-Planes reaches the best performance with the lowest
spatial resolution and fewest chunks setting (464× 220, 1 chunk).

Baseline All-view Forward Multi-view

PF I-NGP [11] 28.16 / 27.24 24.77 / 23.99 24.07 / 25.37
MixVoxels [15] 27.63 / 27.43 20.51 / 15.80 23.65 / 24.02
K-Planes [5] 25.38 / 24.55 23.23 / 22.40 22.64 / 22.89

Table 10. The PSNR of testing views / occluded views across
different settings of the capture system. The PSNR of All-view
is higher than Multi-view. Hence, more cameras can help NeRFs.
The PSNRs of All-view and Multi-view are higher than Forward on
occluded view, indicating that multi-view 360◦ settings are better
than forward-facing settings.

views on DiVa-360. In addition, the visualization results
(see Figure 22 and Figure 23) also support the statement that
the performance of I-NGP segmentation is more multiview
consistent.

We show multi-view inconsistencies of SAM in Figure 22
and Figure 23. Specifically, we can notice that different
views of the same sequence may contain different artifacts,

Baseline Obj. and Int. Obj. Int.

I-NGP Seg. [11] 0.926 / 0.048 0.962 / 0.016 0.901 / 0.071
SAM [6] 0.919 / 0.086 0.955 / 0.042 0.885 / 0.118

Table 11. The mean intersection over union (mIoU) / average
standard deviation of mIoU over six views. I-NGP segmentations
outperform SAM on DiVa-360. In addition, a lower standard devia-
tion indicates more equal quality across views.

remove certain objects, or miss the boundary of certain ob-
jects. For one time step of the Pour Salt sequence, one view
contains part of the background, one misses the boundary of
the spoon, and one completely removes the spoon. Likewise,
in the Replace Battery sequence, one view misses the bound-
ary of the hand, one completely removes part of the object,
and a few views include the camera in the background.
Failure Cases: We show failure cases of I-NGP segmen-
tation in Figure 24. Generally, the method misses sections
where the object is very small (e.g. the strand of yarn in the
Crochet sequence), transparent (e.g. the clear water bottle in
the Pour Tea Sequence), highly reflective (e.g. the key in the
Unlock sequence), or white (e.g. the paper in the Writing
sequence). This is likely because the objects are too similar
to the background, making it hard to distinguish between the
two. It is also important to note that the lower arm in Pour
Tea is missed because we shrink the bounding box slightly
smaller than the BRICS machine. This is acceptable because



the lower arm is cropped in the 3D space, so it still maintains
the multi-view consistency, and we focus on the interaction
between objects and hands. This also causes the perfor-
mance of I-NGP segmentation to be underestimated because
we label the whole arms for ground truth. Of course, the
segmentation model in our pipeline can always be replaced
by another much better method in the future.

6. Dynamic Dataset Distribution
In this section, we elaborate on the dataset distribution of
DiVa-360.
Temporal Length: Figure 26 demonstrates the dataset
distribution of all data, object data, interaction data, and
long-duration data. Overall, DiVa-360 contains dynamic
sequences ranging from 5 to 200 seconds. Among them,
37 sequences are 5-29 seconds long, 5 sequences are 30-
59 seconds long, 1 sequence is 60-119 seconds long, and
11 sequences are 120-200 seconds long. Our object and
interaction dataset contains several long sequences longer
than 30 seconds, and our long-duration dataset contains 8
sequences longer than 119 seconds.

7. Other metadata
How can a video play without any audio and captions?
Hence, our sequences are accompanied by audio captured
through microphones and text descriptions labeled by hu-
mans for a better viewing experience. Currently, the audio
and text descriptions are only used for a better immersive
experience when viewing the sequences. However, we hope
this can be extended to other multimodal NeRFs [8] in the
future.
Audio Data: BRICS can also act as a multimodality capture
system that captures visual and sound data simultaneously.
The object sequences and hand-object interaction sequences
of the dynamic dataset are accompanied by synchronized
spatial audio. The 6 microphones located throughout the
capture system allow for 360°audio which provides both
loud (e.g. microphones located at the top) and more subtle
sounds (e.g. microphones located at the bottom) of the
motion. We do not currently have synchronized audio for
the long-duration dynamic sequences.
Text Description: The object sequences and the hand-object
interaction sequences of the dynamic dataset are accompa-
nied by natural language descriptions at 3 levels of detail.
These descriptions are generated entirely by a human an-
notator without the assistance of any automated tools. The
coarsest level aims to capture a broad summary of the scene
(“putting candy into a mug”), while finer levels increasingly
describe appearance (“...the pieces are in pink, green, orange,
and black wrappers...”), relative position (“...candy scattered
around a black mug...”), number of hands, audio, and tem-
poral progression. Across the dynamic scenes, the average

length of the descriptions is 6.1, 18.4, and 38.7 words for
the 3 levels of detail, amounting to a total of 2907 words.
We do not currently have natural language descriptions for
the long-duration dynamic sequences. To prevent the bias of
labeling, we plan to have more people label text descriptions
in the future.

8. Visualization Quality
We encourage readers to download the uncompressed data
from our website for better visualization quality since some
blurriness in images is due to the object’s small size relative
to the image. For instance, the horse is a hand-size object
while the dog is two times larger. This accounts for differ-
ences in observable detail between the sequences. We report
object sizes in the Table. 5.



Scene PF I-NGP / Mixvoxels / K-Plane PF I-NGP / Mixvoxels /K-Planes PF I-NGP / Mixvoxels / K-Planes PF I-NGP / Mixvoxels / K-Planes
PSNR↑ SSIM↑ LPIPS↓ JOD↑

chess long 28.555 / 29.972 / 23.216 0.901 / 0.930 / 0.885 0.138 / 0.132 / 0.251 7.062 / 7.558 / 6.820
crochet 29.719 / 28.672 / 26.609 0.964 / 0.946 / 0.948 0.065 / 0.095 / 0.178 8.146 / 7.930 / 6.390

jenga long 30.052 / 30.548 / 29.061 0.928 / 0.939 / 0.931 0.085 / 0.083 / 0.165 8.135 / 8.435 / 8.437
legos 27.927 / 28.436 / 25.342 0.887 / 0.901 / 0.890 0.132 / 0.122 / 0.212 6.514 / 7.492 / 6.611

origami 29.694 / 30.191 / 28.028 0.933 / 0.936 / 0.932 0.095 / 0.094 / 0.175 7.796 / 7.955 / 7.740
painting 29.937 / 30.151 / 27.881 0.921 / 0.933 / 0.922 0.118 / 0.112 / 0.292 7.557 / 7.851 / 7.316
puzzle 28.463 / 29.343 / 25.756 0.927 / 0.942 / 0.925 0.115 / 0.110 / 0.204 7.536 / 8.000 / 7.751

rubiks cube 30.436 / 29.649 / 25.668 0.969 / 0.951 / 0.937 0.064 / 0.093 / 0.209 8.024 / 7.776 / 7.112

Table 12. Rendering quality of all long-duration scenes using PF I-NGP[11], MixVoxels[15] and K-Planes[5]. It is surprising that MixVoxels
outperforms PF I-NGP in most scenes, with the exception of Crochet and Rubik’s Cube. This is because PF I-NGP cannot maintain the
temporal consistency for static parts, such as the large chessboard in the Chess Long scene and tray in Jenga Long, Legos, Origami, Painting,
and Puzzle scenes, while MixVoxels is good at them.



Figure 5. Test view reconstruction and ground truth of the two dynamic objects with slow motion: world globe and horse. Top: Although
MixVoxels cannot capture the high-frequency details, the object’s shape is correctly reconstructed. K-Planes cannot capture the high-
frequency details and construct many floaters around the object. Bottom: The rendering results of MixVoxels are close to the ground truth.
K-Planes still suffers from a bunch of floaters.



Figure 6. Test view reconstruction and ground truth of two fast motion objects: blue car and dog. Top: The reconstruction results of
MixVoxels and K-Planes are blurry. Bottom: The reconstruction results of MixVoxels, such as the dog’s tongue, are slightly blurry. K-Planes
looks similar to the ground truth.



Figure 7. Test view reconstruction and ground truth of two detailed motion objects: clock and hourglass. Top: MixVoxels captures the
clock’s body accurately but cannot reconstruct the second hand. By contrast, K-Planes struggle for the static part, the clock’s body, but the
second hand is partially reconstructed. Bottom: All baselines cannot reconstruct the hourglass well due to transparency and highly detailed
motion.



Figure 8. Test view reconstruction and ground truth of two objects with repetitive motions: stirling engine and toy penguin. Top: MixVoxels
reconstructs the stirling engine well, while K-Planes fails to capture the rotating part correctly. Bottom: All baselines almost faithfully
capture the toy penguin.



Figure 9. Test view reconstruction and ground truth of two random motion objects: toy wolf and plasma ball. Top: Both MixVoxels and
K-Planes capture the toy’s motion, but MixVoxels generates some artifacts and sometimes fails to capture parts of the ear and foot of the
wolf, and K-Planes contains a few floaters in some frames. Bottom: MixVoxels captures the currents in the plasma ball surprisingly well,
while K-Planes and PF I-NGP completely fail. Notably, the plasma ball is captured from a darker environment, so we use the ground truth
mask to turn the background into white color for visually pleasing purposes.



Figure 10. Interaction scene showing the motion of replacing a toy Trex’s battery. The sequence contains a series of realistic motions. Both
PF I-NGP and MixVoxels correctly reconstruct the scene. K-Planes distorts the hand in the first column and generates many floaters.



Figure 11. Interaction scene showing the motion of flipping through a book. PF I-NGP generates some artifacts around the bottom of the
book in the second and fourth columns. MixVoxels generates blurry book pages in the third column. K-Planes totally misses the texts in the
third column.



Figure 12. Interaction scene showing a hand playing a toy piano. Both PF I-NGP and MixVoxels capture the motion successfully, but PF
I-NGP produces some white scratches on the back of the hand. K-Planes produces white scratches on the back of the hand and floaters in the
background.



Figure 13. Interaction scene showing the process of opening a can of soda. MixVoxels generates a few floaters around the hand in the first
column. K-Planes generates many floaters in the background.



Figure 14. Long-duration scene showing people playing chess. Both PF I-NGP and MixVoxels can reconstruct the chessboard and chess
well, while K-Planes struggles at these static parts. For dynamic parts, both PF I-NGP and K-Planes can capture the hand clearly, while
MixVoxels cannot.



Figure 15. Long-duration scene showing a person crocheting. PF I-NGP can capture the holes in the fabrics, while MixVoxels and K-Planes
smooth the fabrics.



Figure 16. Visualization results of three baselines trained with sequences that split into 12, 6, 3, and 2 chunks. More chunks indicate a
shorter temporal length per model and less temporal information. MixVoxels is less noise in Replace Battery, and the bear’s eyes in Horse
are more apparent when the amount of chunks increases. Unlike MixVoxels, K-Planes generates fewer floaters around the object when the
amount of chunks decreases.



Figure 17. Visualization results of PF I-NGP, MixVoxels, and K-Planes trained with images in different resolutions. * indicates that we
spatially interpolate the rendering results to 1160×550 during testing. The visualization results of PF I-NGP and MixVoxels are similar
across three settings in Horse, but the stripes of the bunny’s clothes are not well reconstructed in 464×200 (better zoom in to see the details).
The visualization results of K-Planes contain fewer floaters when the resolution decreases.

Figure 18. Controlling the spatial resolution and amount of chunks simultaneously does not break the property of MixVoxels and K-Planes.



Figure 19. The visualization results of PF I-NGP, MixVoxels, and K-Planes trained with World Globe captured from BRICS (All-view), two
panels of BRICS (Forward), and BRICS with fewer cameras (Multi-view). We render the occluded view of Forward to demonstrate that the
Multi-view 360◦ setting with enough cameras can provide the most comprehensive reconstruction. Both PF I-NGP and K-Planes can render
the occluded view with roughly similar RGB colors, while MixVoxels renders the occluded view with black background color.



Figure 20. The visualization results of PF I-NGP, MixVoxels, and K-Planes trained with Wolf captured from BRICS (All-view), two panels
of BRICS (Forward), and BRICS with fewer cameras (Multi-view). We render the occluded view of Forward to demonstrate that the
Multi-view 360◦ setting with enough cameras can provide the most comprehensive reconstruction. Both PF I-NGP and K-Planes can render
the occluded view with roughly similar RGB colors, while MixVoxels renders the occluded view with black background color.



Figure 21. Failure cases of MixVoxels and K-Planes. MixVoxels constructs many floaters around the hand in Chess, fails to reconstruct the
small train in Music Box, and the holes of knitted fabric in Crochet. Hence, MixVoxels struggles to capture dynamic parts with complex
motion and fine-grained details. K-Planes misses some static parts of Chess, constructs many floaters around objects, especially for slow
motion objects such as Music Box, and fills the holes of knitted fabric in Crochet. Therefore, K-Planes struggles to capture static parts and
fine-grained details.



Figure 22. The segmented images of I-NGP and SAM from Pour Salt. SAM cannot maintain multiview consistency, so it contains different
artifacts across views. SAM misses the boundary of the spoon in the first view, removes the whole spoon in the second view, and keeps the
background in the third view.



Figure 23. The segmented images of I-NGP and SAM from Replace Battery. SAM cannot maintain multiview consistency, so it contains
different artifacts across views. SAM misses the boundary of the hand in the first view, keeps the background in the first and second view,
and removes the saddle in the third view.



Figure 24. Failure cases of I-NGP segmentation. The performance of I-NGP segmentation is less robust with small thin objects (the yarn
in Crochet), transparent objects (the bottle in Pour Tea), high reflection objects (the key in the Unlock), and white objects (the paper in
Writing). A part of the lower arm is cut by the bounding box of I-NGP.



Figure 25. Visualization of temporal consistency by concatenating a line of pixels across frames from the same view. PF I-NGP contains
white noise in all four objects, so PF I-NGP is less temporal consistent. Although K-Planes’s rendering result is whiter than the ground truth
in Put Fruit, Stirling Engine, and Wolf, the noise is smooth across frames. The rendering result of MixVoxels is pretty smooth in Chess and
Stirling Engine, but MixVoxels shows black noise on the hand of the Put Fruit and white blocks in Wolf.



Figure 26. Data distribution in terms of sequence length. Overall, the sequence length of DiVa-360 ranges from 5 to 200 seconds. Both
object and interaction datasets have included several long sequences longer than 10 seconds. Our long-duration dataset provides sequences
that are at least 120 seconds long.
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