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Abstract

Transmittance estimators such as Occupancy Grid
(OG)[10] can accelerate the training and rendering of Neu-
ral Radiance Field (NeRF) by predicting important samples
that contributes much to the generated image. However, OG
manages occupied regions in the form of the dense binary
grid, in which there are many blocks with the same values
that cause redundant examination of voxels’ emptiness in
ray-tracing. In our work, we introduce two techniques to
improve the efficiency of ray-tracing in trained OG without
fine-tuning. First, we replace the dense grids with VDB[11]
grids to reduce the spatial redundancy. Second, we use hi-
erarchical digital differential analyzer (HDDA)[12] to ef-
ficiently trace voxels in the VDB grids. Our experiments
on NeRF-Synthetic[9] and Mip-NeRF 360[3] datasets show
that our proposed method successfully accelerates render-
ing NeRF-Synthetic dataset[9] by 12% in average and Mip-
NeRF 360 dataset[3] by 4% in average, compared to a fast
implementation of OG, NerfAcc[8], without losing the qual-
ity of rendered images.

1. Introduction

Neural Radiance Fields (NeRFs) have shown impressive
results in novel view synthesis tasks by using neural net-
works and ray tracing to model volume density and view-
dependent appearance[9]. While NeRF-based methods
represent detailed geometry and photorealistic appearance,
they are suffered from high computational costs in render-
ing. For instance, the original NeRF method requires days
to train a single scene and 10 seconds to render a frame[9].

Usually a NeRF model can be divided into two main
modules: a ray-sampler and a radiance field. When we
calculate a color of the given pixel, at first the ray-sampler
decides the sampling points on the camera ray that asso-
ciates to the pixel, and then sampled points are fed into
the radiance field to predict the density and color of each
point. Finally, these values are accumulated to the pixel

color. Recently, many methods for accelerating training
or rendering have been proposed by modifying radiance
fields[4, 5, 10, 14, 15, 17] or improving ray-samplers[3, 10].
In addition, it is known that they also improve convergence
speed in training. In this work, we focus on ray-samplers to
give benefits to the trained NeRF models without large com-
putational cost such as fine-tuning[19]. Since improving
ray-samplers and radiance fields orthogonally contribute
to rendering acceleration, our work on ray-samplers can
be combined with any Occupancy Grid (OG)[10]-based
model.

The main aim of ray-samplers is to sample important
points on a ray. In ray-tracing, we can reduce the number of
samples without losing the quality by selecting points with
higher densities. For example, NerfAcc[8] demonstrates
that OG can serve as a good sampling method of both faster
convergence and rendering for various NeRF methods.

Dispite its performance and usability, OG manages oc-
cupied regions in the form of the dense binary grid and
has spatial redundancy. It makes rendering slower due to a
number of unnecessary operations to search occupied vox-
els on a ray. To resolve this problem, we propose a method
that replace the OG-based ray-sampler without re-training
or fine-tuning. Our method is composed of two techniques.
First, to reduce spatial redundancy in OG, we use VDB[11],
a data structure for sparse volumes. This data structure
merges a block of a number of empty voxels. Second, to
synergistically accelerate sampling with VDB, we use an
efficient ray-tracing algorithm called Hierarchical Digital
Differential Analyzer (HDDA)[12], which skips a merged
empty voxel at one operation. These two techniques reduce
the number of operations to traverse voxels on a ray, and
accelerate the ray-sampler.

As far as we know, this work is the first paper that utilizes
a hierarchical data structure and a hierarchical ray tracing
algorithm simultaneously in the context of NeRF rendering
acceleration. To evaluate our method, we trained Instant-
NGP[10] with a normal OG-based ray-sampler and replaced
it with our VDB-based algorithm before starting to ren-
der images. We used NeRF-Synthetic dataset[9] and Mip-



NeRF 360 dataset[3], and showed that in most cases our
method improved rendering FPS while preserving PSNR
compared to the NerfAcc[8] implementation. In addition,
we showed using VDB and HDDA together makes much
larger improvements than using either technique in some
cases. Our code is available at https://github.com/
Yosshi999/faster-occgrid.

2. Related Works
2.1. Efficient Ray-Sampler

By sampling the points which contributes much to the fi-
nal rendered image, i.e., the points with high density, we
can reduce the number of samples without losing the qual-
ity of synthesized images. Several approaches to identify
high-density points have been proposed. Occupancy Grid
(OG)[10] caches the predicted densities in NeRF output
during training, and the ray tracer samples from the voxels
whose density is higher than a threshold. Mip-NeRF 360[3]
proposed Proposal Network (PN), a neural network to es-
timate the density of queried points. However, since PN
requires a number of network forward inferences to suggest
sampling points, it unavoidably demands additional com-
putational costs. Therefore, PN contributes to faster con-
vergence of training but is not suited to improve rendering
efficiency. In this work, we adopt OG as a baseline because
we focus on the faster rendering.

2.2. Sparse Data Structures

Some NeRF methods create feature grids to represent a radi-
ance field, in which there are usually large vacuum regions.
Thus, it is important to reduce the number of accesses to
such vaccum regions. This is also true for OG. To reduce
such spatial redundancy in the grid, we can adopt sparse
data structures that are widely investigated in the domain
of Computer Graphics (CG). One approach is Octree[7],
which recursively subdivides the grid and represents its con-
tainment relationship as a tree. It can reduce its spatial
redundancy by pruning the nodes which associate to the
empty spaces. This enables skipping large empty regions
and accelerating ray-tracing. Instant-NGP[10] uses Octree-
like structure when it represents OG in training larger
scenes, but no pruning is performed. Another approach
is VDB[11], a tree-like data structure to store sparse vox-
els in a hierarchical manner. Unlike Octree, VDB fixes the
depth of its tree and saves the computational cost to traverse
the tree in accessing voxels. In addition, VDB provides
a caching mechanism to accelerate accessing neighboring
voxels. Notice that PlenVDB[18] already adopts VDB for
representing the radiance field to achieve fast voxel access-
ing and efficient memory usage. However, it doesn’t utilize
VDB’s hierarchical structure for ray-tracing. This fact moti-
vated us to fully exploit VDB for OG, which is connectable

Figure 1. Examples of ray-marching algorithms. DDA (left),
Chessboard Distance (CD)[16] (center), and HDDA on quadtree
(right). Black dots depict lookup operations. Black lines are where
the colors are sampled. White voxel means empty space. In DDA,
we need lookup the voxel’s occupancy one by one. CD saves the
L∞ distance to the nearest occupied voxel in advance. HDDA can
skip by power of two according to the information in the quadtree.

to various NeRF-based methods. In addition, we focus on
more efficient ray-tracing algorithms that could be run on
VDB’s hierarchical structure, which will be described in the
next section.

2.3. Enumerating Line-Grid Intersections

In CG research community, efficient ray marching meth-
ods are widely investigated. They are also useful for faster
NeRF rendering. In this section, we introduce some ray
marching algorithm that suit with grid based NeRF algo-
rithms.

A widely adopted algorithm is DDA[2]. It efficiently
enumerates the voxels that intersect a given line. In NeRF
rendering, we can sample points from occupied voxels on a
ray while skipping empty voxels. However, NeRF scenes
usually have many empty regions and skipping only one
voxel for each iteration is inefficient. There have been some
approaches to efficiently skip multiple voxels in the liter-
ature. One way is to retrieve the distance for which we
can skip safely from the current point[6, 16]. However,
this requires large additional memory to save integers in the
all voxels. Another approach is a hierarchical technique.
HDDA[12] utilizes VDB’s hierarchical structure and skips
a large empty subspace. Fig. 1 visualizes three approaches:
DDA[2] as a baseline, Chessboard Distance[16] as a skip-
ping method with distance retrieval, and HDDA[12] as a
hierarchical approach. In this work, we use HDDA to effi-
ciently search significant voxels in our VDB-structured OG.
As far as we know, modifing the ray-tracing algorithm to
suit hierarchical data structure is the first attempt in the do-
main of accelerating NeRF’s ray-sampler.

3. Method
We convert Occupancy Grid (OG)[10] of a trained NeRF
model into VDB-based structure using OpenVDB[1], and
transfer it to GPU using NanoVDB[13]. In this work, we
use Instant-NGP[10] as a base model. If there are some re-



PSNR chair drums ficus hotdog lego materials mic ship ave.

NerfAcc 35.74 25.45 33.96 37.33 35.79 29.58 36.71 30.57 33.14
VDB + DDA branch 35.74 25.45 33.96 37.33 35.79 29.58 36.71 30.57 33.14

VDB + DDA skip 35.74 25.45 33.96 37.33 35.79 29.58 36.71 30.57 33.14
VDB + HDDA branch 35.64 25.43 33.96 37.33 35.68 29.57 36.64 30.55 33.10

VDB + HDDA skip 35.64 25.43 33.96 37.33 35.68 29.57 36.64 30.55 33.10

FPS chair drums ficus hotdog lego materials mic ship ave.

NerfAcc 4.22 4.19 4.27 4.24 4.29 5.06 4.48 3.28 4.25
VDB + DDA branch 4.67 4.58 4.63 4.89 4.77 5.63 4.86 3.78 4.73

VDB + DDA skip 4.03 3.83 3.94 4.32 4.08 4.79 4.29 3.46 4.09
VDB + HDDA branch 4.60 4.32 4.41 4.86 4.76 5.68 4.85 3.71 4.64

VDB + HDDA skip 4.73 4.48 4.54 4.94 4.82 5.85 5.03 3.80 4.77

Table 1. Rendering results on NeRF-Synthetic dataset.

PSNR outdoor indoor
bicycle flowers garden stump treehill room counter kitchen bonsai ave.

NerfAcc 22.33 19.98 24.56 23.17 22.06 30.52 26.90 27.92 29.99 25.27
VDB + DDA branch 22.33 19.98 24.56 23.17 22.06 30.52 26.90 27.92 29.99 25.27

VDB + DDA skip 22.34 19.98 24.56 23.17 22.06 30.53 26.90 27.93 30.00 25.28
VDB + HDDA branch 22.32 19.98 24.56 23.17 22.06 30.5 26.88 27.91 29.98 25.26

VDB + HDDA skip 22.32 19.98 24.56 23.17 22.06 30.51 26.88 27.92 29.99 25.27

FPS outdoor indoor
bicycle flowers garden stump treehill room counter kitchen bonsai ave.

NerfAcc 1.21 1.64 1.63 1.17 1.30 4.37 4.03 4.61 4.20 2.69
VDB + DDA branch 1.34 1.80 1.83 1.29 1.41 4.64 4.15 4.78 4.36 2.84

VDB + DDA skip 1.25 1.62 1.69 1.21 1.27 4.27 3.63 4.16 3.80 2.55
VDB + HDDA branch 1.31 1.78 1.81 1.27 1.37 4.53 4.11 4.74 4.39 2.81

VDB + HDDA skip 1.31 1.80 1.82 1.28 1.39 4.59 3.96 4.66 4.46 2.81

Table 2. Rendering results on Mip-NeRF 360 dataset.

dundancies in the VDB grid, we prune them and manage
the large occupied or unoccupied region as a tile, where the
tile contains multiple voxels sharing same values. When the
ray-sampler collects points on a ray, we use HDDA[12] to
efficiently traverse grids on the ray. Every time we find an
occupied voxel or a fully occupied tile, we sample points
along the ray at specified intervals; a constant stepsize for
NeRF-Synthetic dataset[9] and a linearly increasing step-
size for Mip-NeRF 360 dataset[3]. Usually ray-sampling
is processed on GPU and each thread is assigned to each
ray. We note that there are mainly two implementation vari-
ants for the ray-sampling kernel. One algorithm branches in
traversing a grid according to its occupancy, and the other
skips all empty cells and then marches in a grid. The for-
mer, we named it DDA branch, is adopted by NerfAcc[8],
and the latter, we named it DDA skip, is adoped by Instant-
NGP. We show the algorithms in the supplementary mate-

rial Sec. 6. In this work, we compare the rendering speed
by changing the ray-sampling kernel.

For larger scenes such as Mip-NeRF 360, we prepare
multi-resolution VDB grids by following the setting of
Instant-NGP[10]. When the ray-sampler accesses the vox-
els and multiple voxels are intersected at the same time, it
prioritises finer voxels.

4. Experimental Results
4.1. Experimental Setup

We used NeRF-Synthetic dataset[9] for bounded scenes and
Mip-NeRF 360 dataset[3] for unbounded scenes. NeRF-
Synthetic contains eight synthetic scenes and each scene
has 100 images for training and 200 images for testing.
We prepared a single Occupancy Grid (OG) with resolu-
tion 1283 for NeRF-Synthetic. Mip-NeRF 360 contains
four indoor and five outdoor photorealistic scenes and each



scene has between 100 and 330. We followed the setting of
Instant-NGP[10] and prepared four multi-resolution grids
and each grid has resolution 1283 and voxel size 2b, where
b ∈ [0, 3] for Mip-NeRF 360. On both datasets we trained
Instant-NGP with 20k iterations and the batchsize of 1024.
We updated OG every 16 iterations in training. We used
NerfAcc[8] as a baseline and forked it to implement our
VDB-based ray-sampler and experiments. As far as we
know, NerfAcc is the fastest implementation of OG[8].

After training NeRF models, we converted the dense
grids of OG into VDB[11]. It took only 60 msec to covert
the dense grids in the worst case. Next, we rendered the test
images to measure FPS, PSNR, and the amount of mem-
ory allocated by VDB grids. We selected the ray-tracing
algorithm from DDA and HDDA described in Sec. 2.3, and
selected the kernel implementation from DDA branch and
DDA skip described in Sec. 3. All experiments are con-
ducted on a Ubuntu server with 1x NVIDIA A100 GPU.

4.2. Results

Tab. 1 shows that our method improves the rendering FPS
in the all cases in NeRF-Synthetic dataset. In most cases,
the ray-sampler using VDB and HDDA with the DDA skip
kernel records the fastest FPS, and accelerate rendering by
12% in average. In the best case, hotdog scene gets faster
by 16% in rendering. Note that no scene got significantly
worse PSNR than the baseline.

Tab. 2 shows that in Mip-NeRF 360 dataset our method
improves the rendering FPS by 4-5% in average. Similarly
to the experiment on NeRF-Synthetic dataset, all scenes
don’t get worse significantly in PSNR. We note that intro-
ducing HDDA did not work well for Mip-NeRF 360 dataset
and in most cases the ray-sampler with DDA and the ker-
nel DDA branch was the best. In addition, the extent of
speedup on Mip-NeRF 360 dataset is smaller than that of
NeRF-Synthetic dataset.

Tab. 3 shows that the memory usage of VDB grids is
about twice larger than the baseline, which uses a bitarray
representing dense boolean grids. In particular, VDB grids
converted from Occupancy Grid trained on Mip-NeRF 360
dataset are tend to be much larger because of the VDB’s
overhead. However, we believe it is acceptable because ad-
ditional memory usage is at most 1.5MiB, since the size of a
family of compact NeRF-based models is around 5MiB[5].

5. Discussion
In this study we proposed to use a VDB-based Occupancy
Grid (OG) and a sampling algorithm using HDDA to ac-
celerate NeRF rendering. Our experiments showed that
it improves rendering speed, without losing the quality of
rendered images. We emphasize that our method can be
adopted for the trained NeRF models whose ray-sampler is
based on OG. However, for larger scenes such as Mip-NeRF

Size (KiB)

chair 336.5
drums 410.4
ficus 388.6

hotdog 337.5
lego 339.9

materials 327.4
mic 316.1
ship 363.1

ave. 352.4

Size (KiB)

bicycle 2259.0
flowers 2145.4
garden 2089.7
stump 2157.9
treehill 2279.8
room 1999.1

counter 2116.8
kitchen 2155.8
bonsai 2105.8

ave. 2145.5

Table 3. The size of VDB grids converted from Occupancy Grid
(OG) trained on NeRF-Synthetic dataset (left) and Mip-NeRF 360
dataset (right). Before conversion, OG trained on NeRF-Synthetic
is 256KiB and OG trained on Mip-NeRF 360 is 1024KiB.

360[3], our improvement tends to be marginal, possibly be-
cause of an overhead in processing multiple VDB grids.
It is necessary to compare the amount of additional mem-
ory consumption and FPS improvement when our method
is adopted in production. In addition, when we replaced
the ray-sampler with ours, it was not able to generate the
entirely same images as the original ray-sampler generates.
One potential reason lies in floating errors that could nega-
tively affects the rendering results.

We also find that DDA skip, skipping leading empty cells
in advance, did not work well with DDA, as shown in ”VDB
+ DDA skip” rows of Tab. 1 and Tab. 2. However, by using
VDB together with HDDA, the rendering speed got faster
than the baseline. While we believe this is because HDDA
could reduce the number of operations for skipping vox-
els and saved the computational time in all threads, deeper
investigations of the CUDA performances should be per-
formed in the future work.

It is notable that using other sparse data structure such as
Octree is also worth investigating. While VDB restricts the
depth of tree and requires larger sub-grids for each level, the
dimension of sub-grid is always 23 in Octree and its fineness
may help the effectiveness of representing sparse scenes. In
addition, Octree-based OG may be more memory-efficient
because the structure of Octree is simpler than VDB.

A possible extension of our work is to accelerate train-
ing. One of the difficulties of adopting efficient data struc-
ture in training is to minimize the overhead of optimizing
spatial redundancy. Since pruning requires computation
time to some extent, we can’t frequently prune the vari-
ables that is intermittently updated during training. Our pro-
posed method is not suitable for frequent updates because
the VDB grid located on GPU is read-only and we have to
re-transfer the grid pruned on CPU to GPU. An efficient
backend with low-cost pruning is worth investigating.
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Supplementary Material

Algorithm 1 Algorithm of DDA branch. Analyzer returns
index ijk of the next voxel intersected by the ray(o, d), and
interval of t ∈ [t0, t1] where o + td is inside the voxel.
grid.at returns whether the voxel at ijk is occupied or not.

1: function DDA BRANCH(ray, tmin, tmax)
2: buf ← [ ]
3: tlast ← tmin

4: while tlast ≤ tmax do
5: // Analyzer is DDA or HDDA.
6: ijk, t0, t1 ← Analyzer(ray, tlast)
7: while tlast ≤ t0 do
8: tlast ← tlast +∆t
9: end while

10: while tlast ≤ t1 do
11: if grid.at(ijk) then // Grid is dense or VDB.
12: buf.append(tlast)
13: end if
14: tlast ← tlast +∆t
15: end while
16: end while
17: return buf
18: end function

Algorithm 2 Algorithm of DDA skip.

1: function DDA SKIP(ray, tmin, tmax)
2: buf ← [ ]
3: tlast ← tmin

4: while tlast ≤ tmax do
5: t1 ← tmin

6: repeat
7: ijk, t0, t1 ← Analyzer(ray, t1)
8: until !grid.at(ijk)
9: while tlast ≤ t0 do

10: tlast ← tlast +∆t
11: end while
12: while tlast ≤ t1 do
13: buf.append(tlast)
14: tlast ← tlast +∆t
15: end while
16: end while
17: return buf
18: end function

6. Variants of Ray-Sampling Kernel
We show the ray-sampling algorithms tested by our work
in Algorithm 1 and Algorithm 2. As we describe in Sec. 3,
DDA branch (Algorithm 1) synchronizes the voxel traversal
on all workers, and branches according to each voxel’s oc-
cupancy. On the other hand, DDA skip (Algorithm 2) skips
all leading empty voxels and then marches in the occupied
voxel. DDA in the both algorithms can be replaced with
HDDA.


