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Abstract

We propose GL-NeRF, a new perspective of comput-
ing volume rendering with the Gauss-Laguerre quadrature.
GL-NeRF manages to reduce the number of points needed
for the “fine” network in NeRF by selecting points along the
ray using the Gauss-Laguerre quadrature, which theoreti-
cally guarantees the highest algebraic degree of precision.
While most of the existing works on sample efficiency for
NeRF introduce extra neural networks for the purpose, GL-
NeRF follows the simplest formulation with no additional
neural networks. Thus, it can be seamlessly incorporated
into NeRF at rendering stage without training. To the best
of our knowledge, GL-NeRF is the first method that could
be directly used without training to reduce rendering time
and memory usage simultaneously. Our theoretical results
have been empirically validated on Blender and Real For-
ward Facing datasets.

1. Introduction
Neural Radiance Fields (NeRFs) [20] have shown promis-
ing results for synthesizing images from novel views. The
core component for NeRF’s success is volume rendering,
which requires approximating an integral by densely sam-
pling points along the ray and evaluating volume density
and radiance using a neural network for them. In practice,
more than 100 neural network inferences are needed for
precisely synthesizing the color for a single pixel, which
could be redundant. Works have been done to reduce the
time needed for rendering images, aiming at providing
NeRF with a real-time rendering ability [6, 7, 17, 21, 35].
Despite the promising results shown by these works, they
propose different approaches for achieving real-time ren-
dering by introducing new networks, new data structures,
etc. Therefore, each individual work requires training from
scratch with a specific optimization goal. In this work,
we propose a method that could be implemented in any
existing NeRF-based models that require volume rendering
without further training.

Our approach arises from revisiting the volume render-

ing integral, the key discovery is that with a simple change
of variable, we can turn the integral into a pure exponen-
tially weighted integral of color. This specific form has
a Gauss quadrature (i.e. the Gauss-Laguerre quadrature)
which best approximates it mathematically. Naturally, we
propose to use the Gauss-Laguerre quadrature to directly
compute the volume rendering integral, which we call
GL-NeRF (Gauss Laguerre-NeRF), leading to much lower
computational cost for approximating the integral and
therefore lower time and memory usage.

GL-NeRF provides a different angle for computing
volume rendering and has the potential to be a direct
plug-in for existing NeRF-based products.

2. Preliminaries
Our work is built upon the basic NeRF pipeline with little
modifications. We will cover the basic concept in NeRF,
volume rendering and Gauss quadrature in this section.

2.1. NeRF and volume rendering

NeRF [20] is a powerful implicit 3D scene model for
novel view synthesis. At the core of its rendering ability
is volume rendering. NeRF uses coordinate-based MLP
to encode the scene, assigning volume density (opacity)
and radiance (color) to spatial points. When used for
synthesizing new views, it casts a ray r(t) = o + td
through the pixel to be rendered, samples points along the
ray and computes volume density and radiance for these
points. These values are then aggregated together using
Eq. (1) to give the pixel’s color.

Ĉ(r) =

N∑
i=1

wic(r(ti)), (1)

where
wi = Ti(1− exp(−σ(r(ti))δi)), (2)

Ti = exp(−
i−1∑
j=0

σ(r(tj))δj), (3)

ti represents the sampled position along the ray and δi =
ti+1−ti is the distance between two nearby sampled points.



Figure 1. Comparison of point selection strategy. Left: point selection in original NeRF. They uniformly sample points from U(0, 1)
and use the CDF to inversely map these points onto the ray. With higher weights(i.e. the greater slope is greater) comes denser points.
Right: point selection in our method. We choose points along the ray that satisfy the integral from zero to the point of the volume density
function should be equal to the roots of Laguerre polynomials. In the figure above is an example of choosing 5 points using a 5-degree
Laguerre polynomial. The number on the plot indicates the value of the integral from zero to the right boundary of the region.

Hierarchical volume sampling. Since randomly
sampling along rays could fall into empty space or interior
of objects that lacks the information on what the underlying
scene actually looks like, NeRF proposes a two-stage
hierarchical sampling strategy. It uses a coarse network
to first give a rough estimation of wi, then produces a
piecewise constant PDF. Using this PDF for weighted
sampling could provide points that have more visual effects
along the ray. Finally, a “fine” network takes both the
“coarse” samples and the “fine” samples as input and uses
Eq. (1) to compute the pixel color.

2.2. Gauss quadrature

An n-point Gauss quadrature [8] is a method for numerical
integration that guarantees to yield exact results for integral
of polynomials of degree 2n−1 or less, which is the highest
possible precision for approximating an integral by quadra-
ture.

Gauss-Laguerre quadrature is a variant of the Gauss
quadrature for approximating integrals following the form
of ∫ ∞

0

e−xf(x)dx ≈
n∑

i=1

wif(xi). (4)

In this case, the weight function is g(x) = e−x, the integral
interval is [0,∞). xi corresponds to the root of the Laguerre
polynomials. The weight can be computed explicitly.

While the computation for xi and wi is complicated, in
practice we can use a look up table to store corresponding
xi and wi for a given n.

3. Method
We developed our algorithm based on a simple observation
of the integral for volume rendering. Eq. (1) is an approxi-

mation to the integral

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, (5)

where

T (t) = exp(−
∫ t

tn

σ(r(s))ds). (6)

Let

x(t) =

∫ t

tn

σ(r(s))ds, (7)

we have
dx

dt
= σ(r(t)). (8)

Since σ(r(t)) ≥ 0, x(t) is a monotonically non-decreasing
function of t, therefore, x has a unique correspondence
with t on increasing intervals. With this observation, we
can do a change of variables for Eq. (5) to get

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt

=

∫ tf

tn

e−xc(r(t), d)
dx

dt
dt

=

∫ x(tf )

x(tn)

e−xc(r(x), d)dx.

(9)

As can be seen from Eq. (9), the integral for volume ren-
dering is a weighted integral of c(r(x), d) with the weight
function to be g(x) = e−x. We can extend the integral
interval from [x(tn), x(tf )] to [0,∞) since the integral
between [0, x(tn)) and (x(tf ),∞) are zero. Thus, we have

C(r) =

∫ ∞

0

e−xc(r(t(x)), d)dx, (10)



Figure 2. Qualitative comparison between GL-NeRF and vanilla NeRF on LLFF dataset, the small drop of quantitative performance doesn’t
affect the overall render quality. The number in the figure represents PSNR, SSIM and LPIPS respectively for the image below them.

Method LLFF Blender
Memory Usage Time Usage Memory Usage Time Usage

Vanilla NeRF 3219.70 MB 7.54 s 4790.53 MB 18.68 s
GL-NeRF 3138.37 MB 6.32 s 3153.35 MB 9.30 s

Table 1. We compare GL-NeRF with the vanilla NeRF in terms of memory and time usage for rendering images.

a pure exponentially weighted integral with respect to the
color function, which is of the exact same form as required
by the Gauss-Laguerre quadrature.

3.1. Point selection with Gauss-Laguerre quadra-
ture

Different from NeRF’s sampling strategy, with the help of
the Gauss-Laguerre quadrature, we can abandon the stage
of “fine” sampling and replace it with a deterministic point
selection strategy. Recall Eq. (11) is the integral variable
for Eq. (10). This means if we want to use the Gauss-
Laguerre quadrature to approximate Eq. (10), we have to
choose points xi that are the roots of the nth-degree La-
guerre polynomials. Since every xi is different and thus
has a corresponding ti following Eq. (11), we can choose
ti based on given value of xi, as depicted in right of Fig. 1.
Specifically, we want the integral Eq. (11) to be equal to the
roots of an nth-degree Laguerre polynomial. Right of Fig. 1
gives an example of n = 5. After selecting the Nf points
needed for computing the integral, we only feed these Nf

points into the “fine” network instead of feeding Nc + Nf

points as done in the original NeRF. Here Nc stands for the
coarse sample in original NeRF.

4. Experiments
4.1. Experimental setup

Datasets and evaluation metrics. We evaluate our method
on the standard datasets: Blender and Real Forward Facing
Dataset(LLFF) [19] as in [20]. We follow the standard
training and test splits. We first use the training set to train a
vanilla NeRF for each scene. Then we conduct render-only
experiments with the vanilla method and our method. We
plot the standard render quality evaluation metrics PSNR,
SSIM [33] and LPIPS [38] with respect to the average time
needed for rendering one image for each scene. We also
compare the memory needed and the computation needed
(in terms of FLOPS) for rendering between our method and
the original NeRF.

4.2. Trade-off between render quality and time us-
age

We showcase that our method can be used for rendering
novel views based on pretrained NeRF without further
training. We plotted the quantitative metrics of GL-NeRF
and original NeRF for an intuitive comparison in Fig. 3. It
shows that our method achieves comparable results as the
original NeRF while requiring less computation, leading



Figure 3. Comparison between GL-NeRF and original NeRF in terms of render time and quantitative metrics. Each point on the figure
represents an individual scene. We showcase that with the drop of computational cost GL-NeRF provides, the average time needed for
rendering one image is 1.2 to 2 times faster than the original NeRF. In the mean time, the overall performance remains almost the same
despite some minor decreases.

to 1.2 to 2 times faster rendering. Fig. 3 shows that there
are some minor drop in the overall render quality measured
by PSNR, SSIM and LPIPS, we therefore visualize some
qualitative results in Fig. 2 to show that the drops in these
numbers do not have much effect on the visual quality of
the images.

4.3. Efficiency in terms of time, memory and com-
putational cost

In this section, we compare the overall computation needed
for our method and the original NeRF. We theoretically
compute the FLOPS for our method and the original NeRF
to demonstrate the efficiency of our method. We also com-
pare the GPU memory costs and rendering time.

FLOPS. For a single pixel in the image, the base-
line method in LLFF needs to call the neural network
64 + (64 + 64) = 192 times and in Blender it needs
128 + (128 + 64) = 320 times, while our method only call
the neural network 128 + 32 = 160 times. We use [29] to
compute the total FLOPS needed for rendering one pixel.
Therefore, baseline method takes 47.435 MFLOPS for
LLFF and 79.055 MFLOPS for Blender while our method
remains 39.525 MFLOPS.

GPU memory costs and time needed. As can be seen
from Tab. 1, GL-NeRF takes less time and memory for ren-
dering images comparing to what it’s been implemented on
thanks to the reduction of computational cost.

5. Conclusion
In this paper, we propose GL-NeRF, a new perspective
for computing volume rendering using the Gauss-Laguerre
quadrature which guarantees the highest algebraic precision
with a pre-defined point selection strategy. The main differ-
ence of GL-NeRF with other sample-efficient methods is
that it requires no additional neural network for surface pre-
diction, leading to strong flexibility (i.e. could be used with-
out training). We conduct experiments to showcase that our
method could achieve comparable results with the model
it’s been plugged into.
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man Müller, Matthias Nießner, Angela Dai, and Peter
Kontschieder. Panoptic lifting for 3d scene understanding
with neural fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9043–9052, 2023. 1

[28] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh
Tenenbaum, and Fredo Durand. Light field networks: Neu-
ral scene representations with single-evaluation rendering.
Advances in Neural Information Processing Systems, 34:
19313–19325, 2021. 1

[29] Vladislav Sovrasov. ptflops: a flops counting tool for neural
networks in pytorch framework, 2018. 4

[30] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,
and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8248–8258, 2022. 1

[31] Mikaela Angelina Uy, Kiyohiro Nakayama, Guandao Yang,
Rahul Krishna Thomas, Leonidas Guibas, and Ke Li. Nerf
revisited: Fixing quadrature instability in volume rendering.
arXiv preprint arXiv:2310.20685, 2023. 1

[32] Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer,
Kyle Genova, Mehdi SM Sajjadi, Etienne Pot, Andrea
Tagliasacchi, and Daniel Duckworth. Nesf: Neural semantic
fields for generalizable semantic segmentation of 3d scenes.
arXiv preprint arXiv:2111.13260, 2021. 1

[33] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 3

[34] Lee Westover. Interactive volume rendering. In Proceedings
of the 1989 Chapel Hill workshop on Volume visualization,
pages 9–16, 1989. 1

[35] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yu-Xiong Wang,
and David Forsyth. Diver: Real-time and accurate neural ra-
diance fields with deterministic integration for volume ren-
dering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16200–
16209, 2022. 1

[36] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng,
and Angjoo Kanazawa. Plenoctrees for real-time rendering
of neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5752–
5761, 2021. 1

[37] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 1

[38] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 3

[39] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-
drew J Davison. In-place scene labelling and understanding

with implicit scene representation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 15838–15847, 2021. 1



GL-NeRF: Gauss-Laguerre Quadrature for Volume Rendering

Supplementary Material

A. Related works

Volume rendering. Volume rendering has been widely
used in computer graphics and vision applications [5, 18,
34]. It maps a 3D scene onto 2D images by a weighted in-
tegral over the color of the points along the corresponding
rays with a function of opacity (volume density) as weight.
In practice, the integral is approximated using a finite sum
over sampled points along the ray as derived in [18]. Im-
plicit scene models like NeRF [20], Plenoxels [6] and 3D
gaussians [11] and most of their follow-up all adopt this
technique as the render pipeline. Since randomly sampling
in space for approximating the integral may bring unnec-
essary information (i.e. sampling in empty space) that may
cost extra computation, plenty of works aim to address that
by introducing different techniques for better approxima-
tion of the component needed for volume rendering integral
(i.e. volume density, radiance) [1, 14, 16, 21, 31, 35]. PL-
NeRF [31] proposes to use piecewise linear function for ap-
proximating the volume density throughout the space, lead-
ing to fewer points needed for the “fine” stage sampling pro-
posed by [20]. AutoInt and DIVeR [16, 35] introduce a neu-
ral network for approximating the integral of volume den-
sity instead of using Monte-Carlo sampling. DONeRF [21]
reduces the sampled point needed for computing the inte-
gral by introducing a depth oracle neural network that pre-
dict surface position of the underlying scene and samples
the points near the surface, which contributes the most to
the visual effect in the images. Different from these previ-
ous works, Our work proposes to use the Gauss-Laguerre
quadrature to directly improve the precision of the volume
rendering integral itself, introduces no additional neural net-
works or data structures and remains in the simplest version,
leading to its adaptability into any existing work that relies
on volume rendering integral.

NeRFs. Neural Radiance Fields (NeRFs) have proved
to be a powerful tool for novel view synthesis [20]. It uses
a coordinate-based multi-layer perceptron (MLP) to repre-
sent the scene and render high-fidelity images from different
views. The render is done by pixel-wise volumetric render-
ing [18] with density and color evaluated using the MLP
on hundreds of sampled points along the ray. For mod-
eling high-frequency information in the scene, NeRF uses
positional encoding to map the input coordinates onto high-
frequency bands. The success of NeRF has triggered an
explosive emergence of follow-up works. There are plenty
of works focusing on improving or extending the ability of
NeRF towards different aspects. Aliasing along xy coordi-
nates has been tackled [2], unbounded scenes [3, 26, 30, 37],

xi wi

0.17 3.69× 10−1

0.90 4.19× 10−1

2.25 1.76× 10−1

4.27 3.33× 10−2

7.05 2.79× 10−3

10.76 9.08× 10−5

15.74 8.49× 10−7

22.86 1.05× 10−9

Table A1. Gauss-Laguerre quadrature look-up table when n = 8.

dynamic scenes [15, 22, 24] and scenes with semantic in-
formation [12, 27, 32, 39] have been well explored and
demonstrated the potential of implicit scene representa-
tion with NeRF. Nonetheless, NeRF requires plenty of
time for training and rendering, blocking its way of be-
ing used for real-time rendering. The bottleneck of the
computation time is the MLP used. There are two main
branches of work for extending NeRF towards real-time
rendering. The first branch introduces different data struc-
ture [4, 6, 7, 10, 25, 36] for scene representation. Another
branch, in which our method falls, improves the sample ef-
ficiency of the model [13, 21, 23, 28] to accelerate NeRF
rendering process. While previous works draw their intu-
ition from the underlying physics perspective and thus need
different formulations of the sampling strategy and different
neural network architecture for predicting the surface posi-
tion of the underlying scenes, we propose our method based
on a mathematical observation while maintaining the over-
all pipeline. Benefiting from this, our work could be seam-
lessly incorporated into any existing NeRF-related works
without further training. On the other hand, despite of be-
ing derived from the mathematical perspective, our method
still intuitively satisfies the underlying physical constraints.

B. Intuitive understanding of the points se-
lected using the Gauss-Laguerre quadra-
ture

Since the points near the surface contribute the most to
the final color of the pixel as discussed in [13, 21, 23],
the optimal point selection strategy should choose points
near the surface. The volume density, on the other hand,
increases remarkably near the surface and remains close
to zero at other areas. Therefore, the integral value of it
Eq. (11) should also increases significantly near the sur-
face and remains almost unchanged throughout the rest of



Blender Avg. Chair Drums Ficus Hotdog Lego Mat. Mic Ship

PSNR↑ Vanilla 30.63 34.32 25.80 29.54 35.49 29.53 29.04 31.78 29.52
Ours 29.18 32.43 24.38 26.92 33.91 29.49 27.27 31.55 27.47

SSIM↑ Vanilla 0.95 0.98 0.93 0.97 0.97 0.95 0.95 0.97 0.87
Ours 0.93 0.97 0.91 0.94 0.96 0.95 0.92 0.97 0.84

LPIPS↓ Vanilla 0.037 0.014 0.052 0.021 0.034 0.042 0.035 0.044 0.092
Ours 0.056 0.029 0.087 0.050 0.052 0.038 0.065 0.046 0.122

LLFF Avg. Fern Flower Fortress Horns Leaves Orchid Room Trex

PSNR↑ Vanilla 27.62 26.82 28.37 32.59 28.83 22.38 21.20 32.87 27.93
Ours 27.21 26.63 28.05 31.93 28.05 22.35 21.12 32.51 27.01

SSIM↑ Vanilla 0.88 0.86 0.89 0.93 0.90 0.82 0.74 0.96 0.92
Ours 0.87 0.85 0.88 0.91 0.88 0.81 0.74 0.95 0.90

LPIPS↓ Vanilla 0.073 0.097 0.064 0.030 0.070 0.113 0.122 0.041 0.052
Ours 0.087 0.121 0.075 0.043 0.089 0.117 0.131 0.053 0.069

Table A2. Quantitative Results when training on Blender and LLFF Datasets.

the space. Therefore, most of the points chosen using GL-
NeRF should lie around the surface of the underlying scene.

x(t) =

∫ t

tn

σ(r(s))ds, (11)

Consider a case when n = 8, we want to choose points
ti, i = 1, 2, . . . , 8 such that x(ti) in Eq. (11) should be equal
to the value xi given in the look-up table Tab. A1. Notice
that the first few value for xi (say first three) are small so
that they could be reached by the integral of volume density
near the surface easily. These values has relatively larger
weights assigned to them. Evaluating the color of these
points using neural network and summing them up using
the weights wi given in Tab. A1 following Eq. (12) would
contribute mostly to the pixel color. Notice that even though
the last few xi are quite large and may not be reached by
Eq. (11) along the ray, their corresponding weights are so
small that they almost couldn’t affect the final result of the
pixel color. ∫ ∞

0

e−xf(x)dx ≈
n∑

i=1

wif(xi). (12)

Hence, the points selected using GL-NeRF also cor-
responds to the points near the surface, like in previous
works [13, 21, 23] that design different neural networks for
estimating the surface position, but only without any addi-
tional neural networks. Therefore, thanks to the nice prop-
erty of Gauss quadrature, ideally we can select the optimal
points for computing volume rendering integral if the vol-
ume density estimation is oracle.

C. Gauss-Laguerre quadrature
The Gauss-Laguerre quadrature is an approximation for-
mula for computing integrals over the semi-infinite interval

[0,+∞) with the weight function e−x and reads as∫ +∞

0

e−xf(x)dx ≈
n∑

k=0

wkf(xk). (13)

Here x0, x1, · · · , xn ∈ [0,+∞) are the zeros of the La-
guerre polynomial Ln+1 = Ln+1(x) of degree (n+ 1):

Ln+1(x) =
1

(n+ 1)!
ex

dn+1

dxn+1
(xn+1e−x),

for n = −1, 0, 1, · · · , and the coefficients

wk =
1

xk[L′
n+1(xk)]2

, k = 0, 1, 2, · · · , n. (14)

From the Leibniz formula, it is easy to see that Ln(x) is
a polynomial of degree n and the coefficient of xn is (−1)n

n! .
In particular, we have

L0 = 1, L1 = 1− x, L2 =
1

2
x2 − 2x+ 1, · · · .

The fundamental property of the Laguerre polynomials is

Theorem C.1. The Laguerre polynomials Ln = Ln(x) are
orthogonal with respect to the weight function e−x, that is,

∫ +∞

0

e−xLn(x)Lm(x)dx =

 0, n ̸= m,

1, n = m.

Proof. Assume m ≤ n and set gk(x) = xke−x. From
the Leibniz formula it follows that, for j < k, g(j)k (x) is a
product of xe−x and a polynomial of degree (k − 1) and
thereby g

(j)
k (0) = 0 = g

(j)
k (+∞) for j < k. Thus, we



Blender Avg. Chair Drums Ficus Hotdog Lego Mat. Mic Ship

PSNR↑ Vanilla 30.63 34.32 25.80 29.54 35.49 29.53 29.04 31.78 29.52
Ours 28.56 30.82 24.08 26.62 32.70 28.78 27.19 31.34 27.03

SSIM↑ Vanilla 0.95 0.98 0.93 0.97 0.97 0.95 0.95 0.97 0.87
Ours 0.93 0.96 0.90 0.94 0.96 0.94 0.92 0.97 0.84

LPIPS↓ Vanilla 0.042 0.014 0.052 0.021 0.034 0.042 0.035 0.044 0.092
Ours 0.070 0.050 0.098 0.055 0.059 0.047 0.070 0.044 0.135

LLFF Avg. Fern Flower Fortress Horns Leaves Orchid Room Trex

PSNR↑ Vanilla 27.62 26.82 28.37 32.59 28.83 22.38 21.20 32.87 27.93
Ours 26.53 26.27 28.19 31.12 26.81 22.27 20.99 30.38 26.24

SSIM↑ Vanilla 0.88 0.86 0.89 0.93 0.90 0.82 0.74 0.96 0.92
Ours 0.85 0.84 0.88 0.89 0.86 0.81 0.73 0.93 0.89

LPIPS↓ Vanilla 0.074 0.097 0.064 0.030 0.070 0.113 0.122 0.041 0.052
Ours 0.090 0.106 0.066 0.064 0.096 0.115 0.125 0.075 0.075

Table B3. Render-only quantitative results on Blender and LLFF datasets.

deduce that

n!m!

∫ +∞

0

e−xLn(x)Lm(x)dx

=

∫ +∞

0

e−xexg(n)n (x)exg(m)
m (x)dx

=

∫ +∞

0

exg(m)
m (x)dg(n−1)

n (x)

=g(n−1)
n (x)[exg(m)

m (x)]|+∞
0

−
∫ +∞

0

[exg(m)
m (x)]′dg(n−2)

n (x)

=− g(n−2)
n (x)[exg(m)

m (x)]′|+∞
0

+

∫ +∞

0

[exg(m)
m (x)]′′dg(n−3)

n (x)

= · · · · · ·

=(−1)n
∫ +∞

0

gn(x)[e
xg(m)

m (x)](n)(x)dx

(15)

By the Leibniz formula, we have

[
exg(m)

m (x)
](n)

=

n∑
j=0

n!

(n− j)!j!
(ex)(n−j)g(m+j)

m (x)

=ex
n∑

j=0

n!

(n− j)!j!
g(m+j)
m (x)

and thereby

n!m!

∫ +∞

0

e−xLn(x)Lm(x)dx

=(−1)n
n∑

j=0

n!

(n− j)!j!

∫ +∞

0

xng(m+j)
m (x)dx

=

n−m∑
j=0

n!(−1)n+m+j

(n− j)!j!

∫ +∞

0

n!xn−m−j

(n−m− j)!
gm(x)dx

=

n−m∑
j=0

n!(−1)n+m+j

(n− j)!j!

∫ +∞

0

n!

(n−m− j)!
xn−je−xdx

=(−1)n
n−m∑
j=0

n!

(n− j)!j!
(−1)m+j n!(n− j)!

(n−m− j)!

=(−1)n+m (n!)2

(n−m)!

n−m∑
j=0

(n−m)!

j!(n−m− j)!
(−1)j

=(−1)n+m (n!)2

(n−m)!
(1− 1)n−m.

Here the second equality is similar to that in Eq. (15) and
the fourth uses∫ +∞

0

xn−je−xdx = (n− j)!.

This completes the proof.

The orthogonality of the Laguerre polynomials ensures
that the Ln(x)’s are linearly independent and Ln+1(x) has
(n + 1) distinct zeros x0, x1, · · · , xn in [0,+∞) [1]. With
the zeros, the coefficients wk are chosen so that the follow-
ing (n+ 1) equalities∫ +∞

0

e−xxjdx =

n∑
k=0

wkx
j
k, (16)



Figure B1. Some qualitative results on Blender dataset. The number in the figure represents PSNR, SSIM and LPIPS respectively
for the image below them. Poor estimation of volume density throughout the entire space may lead to not finding points in the meaningful
area, leading to the stripe-like mixture of foreground and background (row 3). By using “coarse” network for better volume density
estimation, we manage to reduce the stripe-shape effect brought by white background (row 4).

hold for j = 0, 1, · · · , n. This leads to a system of (n+ 1)
linear algebraic equations for the unknowns wk and the cor-
responding coefficient matrix is the Vandermonde matrix
[xj

k](n+1)×(n+1). The latter is invertible since the zeros
are distinct and therefore the wk’s are uniquely determined.
The specific expressions of the wk’s are given in Eq. (14)
[1].

It is remarkable that all the coefficients wk are non-
negative. This important property ensures the stability and
convergence of the Gauss-Laguerre quadrature [1]. More-
over, we have

Theorem C.2. The algebraic precision of the Gauss-

Laguerre quadrature Eq. (13) is (2n + 1) exactly. Namely,
”≈” in Eq. (13) is ”=” if f(x) is a polynomial of degree
(2n+1) and is not ”=” if f(x) is a polynomial with degree
higher than (2n+ 1).

Proof. Notice that

(n+ 1)!Ln+1(x) = (−1)n+1Πn
k=0(x− xk)

is a polynomial of degree (n+ 1). Since

0 <

∫ +∞

0

e−xL2
n+1(x)dx ̸= 0 =

n∑
k=0

wkL
2
n+1(xk),



the precision is less than 2(n+1). On the other hand, for any
polynomial p = p(x) of degree (2n+1) there are two poly-
nomials of degree n such that p(x) = q(x)Ln+1(x)+ r(x).
Notice that q(x) can be written as a linear combination of
L0(x), L1(x), · · · , Ln(x). Compute∑n

k=0 wkp(xk) =
∑n

k=0 wk[q(xk)Ln+1(xk) + r(xk)]

=
∑n

k=0 wkr(xk)

=
∫ +∞
0

e−xr(x)dx

=
∫ +∞
0

e−x[q(x)Ln+1(x) + r(x)]dx

=
∫ +∞
0

e−xp(x)dx.

Here the third equality is due to Eq. (16) (the choice of wk)
and the fourth is due to the orthogonality of Ln+1(x) and
q(x) with respect to the weight function. Hence the proof is
complete.

For further details on the Gauss-Laguerre quadrature and
for other Gauss quadratures, the interested reader is referred
to the book [9].

D. Quantitative results on Blender and LLFF
datasets

In this part, we present our quantitative results on Blender
and LLFF datasets in Tab. B3. We also use GL-NeRF to
train a neural network for comparison with the baseline in
Tab. A2.

E. Failure cases
We observe that for some scenes in the Blender dataset, the
rendering quality in terms of PSNR falls behind the base-
line. We visualize the corresponding images and find a uni-
versal phenomenon that GL-NeRF tends to provide stripe-
shape textures on the object. Recall that we have to select
t that makes Eq. (11) equal to the root of Laguerre poly-
nomials. However, t may not exist since x(t) is bounded
by maxx = x(tf ) < ∞. Therefore, if the estimation of
volume density is poor, we may end up with points in the
background, leading to the stripe-shape texture as shown in
the third row in Fig. B1. Intuitively, during training, the ma-
jority in input to “fine” network are cluttered near the sur-
face. Therefore, even if the estimation of volume density
is small, by aggregating over all the points, the final render
result could still match the ground truth color of the pixel.
Smaller estimation of volume density could make the point
selection strategy in GL-NeRF fail to select points near the
surface and instead choose points at the camera far plane.
A workaround is to use the “coarse” network trained simul-
taneously with the “fine” network. Since the input points to

the “coarse” network are uniformly distributed in the scene,
“coarse” network has to assign bigger value (than “fine”
network) for the points near the surface to minimize the loss
function.

This could lead to a much more reasonable estimation of
volume density. We therefore turn to the “coarse” network
by first querying it with “coarse” samples for volume den-
sity estimation, selecting points based on the estimation and
finally rendering with the selected point from GL-NeRF.
We visualize some of the results in Fig. B1, denoted as
“Ours(Better)”, and the stripe disappears. This suggests that
GL-NeRF relies on the estimation of volume density heav-
ily and that preciser estimation of volume density could sig-
nificantly improve the performance of GL-NeRF. Despite
this drawback, the results on LLFF dataset suggests that our
method could still be incorporated into real-world scenes
seamlessly.
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