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Abstract

In surgical oncology, screening colonoscopy plays a
pivotal role in providing diagnostic assistance, such as
biopsy, and facilitating surgical navigation, particularly
in polyp detection. Computer-assisted endoscopic surgery
has recently gained attention and amalgamated various 3D
computer vision techniques, including camera localization,
depth estimation, surface reconstruction, etc. Neural Radi-
ance Fields (NeRFs) and Neural Implicit Surfaces (NeuS)
have emerged as promising methodologies for deriving ac-
curate 3D surface models from sets of registered images,
addressing the limitations of existing colon reconstruction
approaches stemming from constrained camera movement.

However, the inadequate tissue texture representation
and confused scale problem in monocular colonoscopic im-
age reconstruction still impede the progress of the final ren-
dering results. In this paper, we introduce a novel method
for colon section reconstruction by leveraging NeuS applied
to endoscopic images, supplemented by a single frame of
depth map. Notably, we pioneered the exploration of uti-
lizing only one frame depth map in photorealistic recon-
struction and neural rendering applications while this sin-
gle depth map can be easily obtainable from other monocu-
lar depth estimation networks with an object scale. Through
rigorous experimentation and validation on phantom im-
agery, our approach demonstrates exceptional accuracy in
completely rendering colon sections, even capturing un-
seen portions of the surface. This breakthrough opens av-
enues for achieving stable and consistently scaled recon-
structions, promising enhanced quality in cancer screening
procedures and treatment interventions.

1. Introduction

Colorectal cancer stands as the third most frequently di-
agnosed cancer and the second leading cause of cancer-
related mortality [18]. Timely detection is paramount
for favourable prognoses. While various techniques such

as virtual colonoscopy exist, optical colonoscopy remains
the gold standard for screening and lesion removal. As
computer-assisted systems gain prominence in routine en-
doscopic procedures and present a fertile ground for inno-
vation, typical computer vision approaches are applied in-
cluding but not limited to depth estimation, 3D reconstruc-
tion, and camera localization, benefiting advancements in
polyp detection, stenosis assessment, post-intervention di-
agnosis, and exploration thoroughness evaluation. Never-
theless, achieving precise 3D reconstructions of large colon
sections in endoscopic videos remains challenging due to
constrained camera movement and the dearth of texture in-
formation within the colon.

To address this challenge, prior research has demon-
strated the feasibility of estimating the colon’s 3D shape
from single images captured during colonoscopies [1]. Yet,
achieving dense reconstructions for large sections neces-
sitates the utilization of multiple images. Since most en-
doscopes are equipped with a monocular camera, lever-
aging video sequences using structure-from-motion algo-
rithms emerges as a natural approach [9]. Despite advances
in image registration techniques [16] and SLAM [3], sparse
reconstructions remain prevalent, leaving the transition to
dense reconstructions unresolved.

The emergence of Neural Radiance Field (NeRF) [13]
networks presents a promising avenue for acquiring im-
plicit 3D representations from image sets. NeRF leverages
neural implicit fields for continuous scene representations,
demonstrating remarkable success in high-quality view syn-
thesis and 3D reconstruction [12]. Instant NGP [14] re-
duced computational costs by introducing versatile new in-
put encoding techniques. Recent developments like Gaus-
sian NeRF [8] offer representations using 3D Gaussians,
preserving desirable properties of continuous volumetric
radiance fields for scene optimization. However, tradi-
tional NeRF-based approaches are ill-suited for endoscopic
surgery videos. Unlike conventional scenes where cam-
eras capture images from various viewpoints, endoscopic
cameras operate within confined spaces, like the cylindri-
cal tunnel of the colon, severely limiting viewing directions
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Figure 1. Implicitly reconstructing 3D structures (b) from MVS (multi-view stereo) images (a), which precisely matches the ground truth
3D structures in (c).

and camera movement. Consequently, existing methods, in-
cluding Neural Implicit Surfaces (NeuS) [19], which rep-
resent surfaces as zero-level sets of signed distance func-
tions (SDFs), fail to provide consistent depth mapping in
endoscopic scenarios. Therefore, there is a critical need for
novel approaches tailored specifically to the unique chal-
lenges posed by endoscopic environments.

Our paper presents a new approach to incorporating
depth information into NeuS for endoscopy reconstruction.
Instead of relying on a dedicated dataset for training a depth
estimator [5–7] tailored to surgical scenes, we leverage an
existing depth estimator trained on nature scenes. By di-
rectly inferring depth maps from this pre-trained estimator
and rescaling them to the endoscopy scenes, we effectively
supervise the NeuS model. The intensive experiments show
that our method achieves state-of-the-art results and pro-
duces accurate depth maps on 2D synthetic rendering and
3D reconstruction of endoscopic surgical scenes.

2. Methodology
Given a set of calibrated multi-view images that capture
an object or a static scene with their corresponding cam-
era poses, a set of the structural surface and the appear-
ance {S,C} of the targeted environment could be learned
through the radiance supervision [11, 19, 20]. The learned
set {S,C} is represented by the signed distance field (SDF)
f(x) : R3 → R where the value of each element is de-

termined by a 3D position x, and a radiance field c(x, v) :
R3 × S2 → R3 which is determined by both the position x
and the viewing direction v ∈ S2. Aiming at learning more
precise zero-crossing surfaces in SDF by jointly training
the SDF and the radiance field, we introduce two proposed
a factor λr to make the SDF regularization more adaptive
to improve the rendering quality and reduce the geometric
bias.

2.1. Neural rendering

By enforcing the radiance supervision through the 2D im-
age, NeRF [13] leverages volume rendering to match the
ground truth for every camera pose with the rendered im-
age. Specifically, the RGB for every pixel of an image can
be generated by sampling n points { r(ti) = o + ti ·v | i =
1, . . . , n } along its camera ray r, where o is the center of
the camera, ti is the sampling interval along the ray and v is
the view direction. By accumulating the radiance field den-
sity σ(r(t)) and the colors c(r(t), v) of the sample points,
the color Ĉ of the ray could be presented as

Ĉ(r) =

∫ tf

tn

T (t) · σ(r(t)) · c(r(t), v) dt (1)

where the transparency T (t) is derived from the volume
density σ(r(t)). T (t) denotes the accumulated transmit-
tance along the ray r from the closest point tn to the farthest



point tf such that

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
. (2)

Note that T (t) is a monotonic decreasing function with a
starting value T (tn) of 1. The product T (t) ·σ(r(t)) is used
as a weight ω(t) in the volume rendering of the radiance in
Eq. (1).

Since the rendering process is differentiable, our model
can then learn the radiance field c from the multi-view im-
ages with the loss function that minimizes the color differ-
ence between the rendered pixels Ĉ(r) with i ∈ {1, . . . ,m}
and the corresponding ground truth pixels C(r) without 3D
supervision as

Lrgb =
1

m

m∑
i=1

(
∥Ĉ(r)−C(r)∥2 + |Ĉ(r)−C(r)|

)
(3)

where m denotes the batch size during training. Based on
the same input and output, we would further investigate a
way to implicitly learn a signed distance field f to extract
meshes embedded in Eq. (1) during training.

2.2. Depth-guided SDF optimization

Aiming at extracting a 3D mesh from a region of interest in
the neural rendering, it is plausible to get a projection from a
signed distance function (SDF) to the radiance field. Here,
we look for a function Φ that transforms the signed dis-
tance function so that it can be used to compute the density-
related term T (t)σ(r(t)) in Eq. (1).

We build our solution on top of HF-NeuS [20], where
they set Φ(r(t)) as the transparency T (t). Notably, the
derivative of the transparency function T (t) is the negative
weighting function as

d(T (t))

dt
= −T (t)σ(r(t)) . (4)

Given such formulation, the SDF surface lies on the maxi-
mum radiance weight. The maxima is computed by setting
the derivative of the weighting function to zero; thus,

d(T (t)σ(r(t)))

dt
= −d2(T (t))

dt2
= −d(T ′(t))

dt
= 0 . (5)

To fulfill the criteria from Eq. (4) and (5), HF-NeuS [20] de-
fined the transparency function Ts(t) as the normalized sig-
moid function [1 + exp (s · f(r(t)))]−1 with a parameter s.
The scalar s reveals how strong the SDF is related to the
radiance field, which is usually increasing during training.
In the initial stage of training, a small s relaxes the con-
nection between SDF and radiance such that the radiance
parametric model is optimized without a dependency on the
plausible SDF, where the view-conditioned depth Z(ri) for
each ray ri matches the ground truth depth Ẑ(ri).

To parameterize SDF, a signed distance function f(x) is
differentiable almost everywhere, while its gradient ∇f(x)
satisfies the Eikonal equation ∥∇f(x)∥2 = 1. This im-
plies that an SDF can be trained with the Eikonal regular-
ization. According to IGR [4], we enforce an Eikonal loss
as a regularizer to make an implicit field act as a signed
distance field. However, we discovered that training with a
fixed Eikonal regularization [19, 20, 22] can lead to a sub-
optimal convergence where the SDF has converged based
on the Eikonal regularization but the rendering can still be
further optimized. Such a problem harms the improvement
of the RGB rendering because the weights are projected
from a wrong SDF value, which makes the extracted mesh
miss the detailed structures.

To solve the problem of the reconstruction failures on
low-textured structures, i.e. internal surface of organ, we
found that the capability of rendering such structures from
the radiance field should be ensured even when the SDF
does not contain the accorded structures so that the gradient
could be back-propagated from the radiance field to the SDF
later on. Given the overall loss function Ltotal = Lrgb+Lsdf ,
RaNeuS [21] proposed to adaptively weight the Eikonal
regularization to optimize the SDF as

Lsdf =
λE

mn

m∑
i=1

λr(ri)

n∑
j=1

(∥nij∥2 − 1)
2
, (6)

where a ray-wise weight λr(ri) for the i-th ray ri is set to
be

λr(ri) =
α

dr(ri) + α
. (7)

We propose to present the ray-wise weight λr(ri) consid-
ering a depth bias instead. Given the depth value Z(ri)
determined by the zero-crossing point sampled from ray
ri, dr(ri) is the depth distance ∥Ẑ(ri) − Z(ri)∥2 regard-
ing ray ri, and α is a positive hyperparameter that is set
to be smaller than 1, e.g. 1 · 10−3. Notice that a precise
per-ray depth supervision Ẑ(ri) is not necessarily supple-
mented, while the depth distance dr(ri) is not optimized di-
rectly here. Given a general depth estimation model such
as a DPT Hybrid model [10], we rescale the predicted
depth according to a reconstructed MVS point cloud using
COLMAP [15, 17] to represent an approximation of Ẑ(ri).
Practically, the gradients back-propagated to the zero cross-
ing point Z(ri) are disabled during training. Consequently,
the Eikonal regularization will be relaxed when the geomet-
ric precision determined by the metric of dr(ri) is unsatis-
fying.

We follow the remaining hyper-parameter setups of Ra-
NeuS [21], where the approximated normal n = ∇f(r(·))
is the derivative of f(r(·)), and λE is typically set to be 0.1
as mentioned by IGR [4] and NeuS [19].



Method Item c1 a c1 b c2 a c2 b c2 c c3 a c4 a c4 b d4 a s1 a s2 a
Gaussian NeRF [8] psnr 32.84 28.19 30.24 31.07 28.25 26.53 28.41 32.03 29.26 36.27 35.22
Vanilla NeRF [13] psnr 32.71 30.68 31.35 29.32 32.32 33.42 32.35 33.70 28.65 35.92 31.00

Ours psnr 34.27 31.02 33.78 31.04 31.02 32.75 33.62 34.19 31.01 31.24 35.88

Table 1. Quantitative results. The best result in each small sequence is presented in bold.

To avoid extreme values for different scenes, dr(r) is
set to be zero when a ray does not hit the foreground SDF
space. A converged model is respected to end up with the
typical Eikonal regularization when there is precise surface
geometry measured by a small dr(r). Thus, in contrast to
[4], our approach is more adaptive to the changes in both
the rendering and SDF optimizations; thus, relaxing the re-
strictions from the predefined parameters.

3. Experimental Results
Our method was trained and assessed using C3VD [2], a
dataset comprising small video sequences obtained from
real wide-angle colonoscopies at a resolution of 1350 ×
1080. These sequences traverse four distinct colon phan-
toms, including the colon cecum, descending, sigmoid, and
transcending regions. Video lengths vary from 61 to 1142
frames, with per-frame camera poses utilized. We divided
each scene into training, testing, and validation sets in a
6:2:2 ratio. Additionally, we compared our model’s perfor-
mance with that of Gaussian NeRF [8] and vanilla NeRF.

The results, presented in Table 1, were evaluated based
on RGB reconstruction quality, measured using peak signal-
to-noise ratio (PSNR). Notably, our method consistently
outperforms or matches the performance of Gaussian NeRF
[8] and vanilla NeRF [13] across most scenarios, as indi-
cated in Table 1.

4. Conclusion
In conclusion, we have introduced an approach to enhance
the reconstruction and rendering quality of endoscopic im-
ages by integrating single-frame depth-guided SDF opti-
mization. We employed adaptive regularization to mitigate
geometric bias, and our method’s efficacy was demonstrated
through PSNR metrics. Remarkably, even without depth
guidance, our method surpassed the performance of Gaus-
sian NeRF [8] and vanilla NeRF [13]. Moreover, the incor-
poration of depth guidance resulted in further improvements
in neural rendering quality.
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