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Abstract

We present differentiable point-based inverse rendering,
DPIR, an analysis-by-synthesis method that processes im-
ages captured under diverse illuminations to estimate shape
and spatially-varying BRDF. To realize this idea, we devise
a hybrid point-volumetric representation for geometry and
a regularized basis-BRDF representation for reflectance.
The hybrid geometric representation enables fast rendering
through point-based splatting while retaining the geometric
details and stability inherent to SDF-based representations.
The regularized basis-BRDF mitigates the ill-posedness of
inverse rendering stemming from limited light-view angu-
lar samples. We also propose an efficient shadow detec-
tion method using point-based shadow map rendering. Our
extensive evaluations demonstrate that DPIR outperforms
prior works in terms of reconstruction accuracy, computa-
tional efficiency, and memory footprint. Furthermore, our
explicit point-based representation and rendering enables
intuitive geometry and reflectance editing.

1. Introduction

Inverse rendering aims to estimate geometry and reflectance
of real-world objects from a set of images, with applica-
tions including relighting, augmented and virtual reality,
and object digitization. We present differentiable point-
based inverse rendering, DPIR, that exploits point-based
forward rendering for inverse rendering. DPIR processes
either multi-view multi-light images or photometric images
captured by multi-view photometric setups [13] and flash
photography, respectively. Using point-based forward ren-
dering confronts several challenges critical for inverse ren-
dering: (1) The discrete point representation hinders the re-
construction of both smooth and detailed surface. (2) The
inherent difficulty in jointly reconstructing geometry and
spatially-varying BRDF from limited light-view samples re-
mains. (3) There is a need for efficient shadow considera-
tion to ensure precise inverse rendering.

To address these challenges, we develop a hybrid point-
volumetric geometry representation and a regularized basis-
BRDF representation. The hybrid geometric representa-

tion enjoys the benefits of both point-based and volumet-
ric geometry representations, ensuring efficient rendering
through point-based splatting. The regularized basis-BRDF
representation consists of a per-position diffuse albedo
and a weighted specular-basis BRDFs, overcoming the ill-
posedness of inverse rendering under limited light-view
angular samples. Also, we tackle the shadow detection
problem through an efficient point-based shadow detection
method, bypassing the volumetric integration often used in
learning-based inverse rendering methods [25, 30, 36, 37].
DPIR then jointly optimizes point locations, point radii, dif-
fuse albedo, specular basis BRDFs, specular coefficients,
and SDF, by leveraging point-based splatting as a forward
renderer in the analysis-by-synthesis framework. Our ex-
tensive evaluations show that DPIR outperforms previous
state-of-the-art inverse rendering methods [8, 30, 33, 34],
in accuracy, training speed, and memory footprint. Fur-
thermore, the explicit point representation and rendering of
DPIR enable convenient scene editing.

2. Related Work
Inverse Rendering Inverse rendering is a long-standing
problem in computer vision and graphics [1, 3, 4, 6, 11, 19,
23, 29, 38]. Learning-based single-image inverse rendering
enables accurate reconstruction for planar samples [2, 14–
16, 22, 24, 27, 32]. For multi-view inputs captured un-
der a constant lighting, learning-based inverse rendering
methods [17, 25, 33, 34, 36, 37] have recently shown
promising results by exploiting volumetric rendering as in
NeRF [18]. However, these methods struggle with low re-
construction accuracy of spatially-varying reflectance and
excessive training time due to the multiple sampling per
each ray in the volumetric rendering process. Using multi-
view and multi-light inputs improves reconstruction quality
as demonstrated in PS-NeRF [30], suffering from excessive
training time and pre-trained photometric stereo network.

Point-based Rendering Point-based rendering uses
points as a compact scene representation for render-
ing [5]. Splatting with circular disks, ellipsoids, or
surfels [20, 39–41] enables high-quality and efficient
point-based rendering. Zhang et al.[35] employ efficient
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Figure 1. Overview of differentiable forward rendering. (a) For each 3D point, its position is used as a query for the diffuse-albedo
MLP Θd, SDF MLP ΘSDF, and specular-basis coefficient MLP Θc. The specular-basis BRDF MLP Θs models specular-basis reflectance,
given the incident and outgoing directions ωi and ωo. The point-based shadow renderer estimates the point visibility from a light source
per each image. By using the diffuse albedo, normals, specular reflectance, and visibility, we compute the radiance for each point. (b) The
radiance is then projected onto a camera plane to render the pixel color through splatting-based differentiable forward rendering.

point-based rendering and spherical-harmonics point radi-
ance for efficient novel view synthesis. Kerbl et al.[9] use
anisotropic Gaussians and tile-based optimization method
for accurate novel-view synthesis of in-the-wild scenes.

In summary, Our DPIR provides highest reconstruction
quality, fastest training time, and lowest memory footprint.
To this end, we use points as rendering primitives, resulting
in fast training with splatting-based rendering. To handle
the limited light-view angular samples, we gather multiple
samples from points with similar specular appearance by
using regularized basis BRDFs. Also, we handle shadow
using efficient point-based shadow rendering.

3. Method
The proposed DPIR estimates points, surface normals,
spatially-varying BRDF, and visibility from the images of
a static object captured either by flash photography [33]
or multi-view multi-light imaging [30]. Figure 1 shows a
detailed overview of our differentiable forward rendering
process, which is pivotal for achieving efficient and high-
quality inverse rendering.

3.1. Scene Representation

Hybrid Point-volumetric Geometric Representation
We use a set of 3D points, where each point possesses two
parameters: position x ∈ R3×1 and radius r ∈ R1×1. Using
the points as geometric primitives allows for fast splatting-
based rendering by bypassing the per-ray integration used
in volumetric rendering. However, using the points only of-
ten makes its surface normals noisy as the discrete points
are non-uniformly distributed through space. To represent
both detailed and smooth geometry with accurate surface
normals n for each point at position x, we use SDF, repre-
sented as a coordinate-based MLP, ΘSDF, as follows:

n = ▽xΘSDF(x) , (1)

where ▽x is the differentiation operator [26, 31].
Our hybrid point-volumetric representation allows dis-

crete points to move in space while the surface normals of
the points can be sampled from the continuous SDF.

Regularized Basis BRDF Representation Reconstruct-
ing per-point BRDF from limited light-view angular sam-
ples is an ill-posed problem. Thus, we propose to exploit
spatial coherency of specular reflectance by using the ba-
sis BRDF representation [10, 12, 19]. Specifically, we use
three MLPs for diffuse albedo, specular coefficients, and
specular basis BRDFs, describing the total reflectance fr as

fr(ωo,ωi,x,n) = Θd(x) + Θs(h,n)Θc(x), (2)

where Θd, Θs, and Θc are the MLPs for the diffuse albedo,
specular basis, and regularized specular-basis coefficients,
respectively. The outputs of the MLPs are in the following
dimensions: Θd(x) ∈ R3×1, Θs(h,n) ∈ R3×K , Θc(x) ∈
RK×1. K is the number of basis BRDFs. ωi and ωo are
the incident and outgoing light directions. h is the half-way
vector: h = (ωi + ωo)/∥ωi + ωo∥.

Unlike previous inverse rendering methods utilizing ba-
sis BRDFs [12, 19, 30], we found that enforcing a positive
constraint in the specular basis coefficients and optimizing
under an l1-norm with a lower bound of ϵ significantly en-
hances the accuracy of reflectance estimation. We set ϵ = 1
for highly glossy objects, ϵ = 0.5 otherwise.

3.2. Point-based Visibility Test

Departing from computationally extensive volumetric-
rendering approaches for visibility test in recent learning-
based methods [12, 30, 36], we use a simple method com-
patible with our point representation: a shadow map tech-
nique used in rasterization-based graphics [7, 21, 28]. Fig-
ure 2 shows the schematics of our visibility test. For each
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Figure 2. Point-based visibility test. To determine the visibility
of each point, we compute the depth using the z-buffer from a vir-
tual camera positioned at the light source, and compare the depth
with the distance from each point to the virtual camera.

input image and a known light source, we place a virtual
orthographic camera at the location of the directional light
source. We then perform splatting-based rendering of the
points to the virtual camera. The resulting z-buffer stores
the depth z of each point with respect to the virtual camera.
The visibility function fv then can be estimated from the
z-buffer as

fv (ωi,x) = σ (τ + z0 (x)− z (x)) , (3)

where σ (·) is the step function that returns 1, meaning visi-
ble from the light source if the input is positive, and 0, which
means invisible, otherwise. z0 (x) denotes the depth value
of the first intersection point and τ is the threshold, set to be
0.1 in our experiments.

3.3. Optimization via Point Splatting

Point-based Rendering For rendering each image, we
use the point location x, normals n sampled from the SDF,
reflectance from the learned BRDFs fr(·), and visibility
from the point-based test fv(·). We compute the radiance
R for each point x along the direction ωo towards a camera
pixel as follows:

R(ωo,x)=L(ωi,x)fv(ωi,x)fr(ωo,ωi,x,n)(ωi · n) ,
(4)

where L(ωi,x) is the incident radiance from the direction
ωi to the point x.

Once the radiance of each point is computed, we project
the points to the camera viewpoints from which images are
captured, using point splatting. The rendered pixel intensity
of a camera pixel u amounts to the results of α-blending of

the projected point radiance R:

I (u) =

N∑
i=1

Riαi(u)

i−1∏
j=1

(1− αj (u)) , (5)

αi (u) = 1− (pi − u)
2

r2i
, (6)

d where N is the number of points, Ri is the radiance of
i-th point computed from Equation (4), pi is the projected
pixel location, and ri is the radius of the point. αi is the
corresponding weight.

Optimization We propose to optimize point positions x,
point radii r, and MLPs for SDF ΘSDF, diffuse albedo Θd,
specular coefficients Θc, and specular-basis BRDFs Θs by
minimizing the following loss:

L2 + λssimLssim + λSDFLSDF + λcLc + λmLm, (7)

where L2 and Lssim are the l2 loss and the SSIM loss for
the rendered image I and the captured image I ′. LSDF pro-
motes the zero-level set of the SDF lies near the point po-
sitions: LSDF = ∥ΘSDF(x)∥2 . Lc regularizes l1-norm of
per point specular coefficient to be ϵ: Lc = ∥Θc(x)∥1 − ε.
Lm is defined as the l2 loss between the estimated mask
and the ground-truth mask, aligning the rendered mask from
the points to the input masks. For stable optimization,
we employ the mask-based initialization of the point loca-
tions, pruning, and upsampling schemes following Zhang et
al. [35].

4. Results
Multi-view Multi-light Images We evaluate DPIR on
DiLiGenT-MV [13], a multi-view multi-light dataset, com-
pared to state-of-the-art neural inverse rendering methods:
PhySG [34], TensoIR [8] and PS-NeRF [30]. Table 1 and
Table 2 show quantitative evaluations of novel-view relight-
ing, normal accuracy, training time, and memory footprint.
DPIR not only outperforms the compared methods in ren-
dering and normal accuracy, but also offers 10× faster train-
ing and 8× lower memory footprints than PS-NeRF, which
is the only competitive method in rendering accuracy. Fig-
ure 3 shows novel-view rendering images and estimated
normals. For the above experiments, we have two compari-
son configurations. First, since PhySG and TensoIR assume
constant environment illumination, we use the multi-light
averaged image for each view to simulate a virtual envi-
ronment map [30]. Second, we make a comparison only
between PS-NeRF and DPIR to directly compare the ren-
dered images under a novel view and lighting without any
averaging. This comparison protocol is adopted from the
PS-NeRF [30].



Bear Buddha Cow Pot2 Reading
Config. Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS↓

PhySG 24.52 0.9590 0.041 20.92 0.9229 0.0624 23.64 0.9604 0.0342 25.21 0.9609 0.0241 19.05 0.9056 0.0817
Single TensoIR 24.81 0.9597 0.0510 25.40 0.9521 0.0374 27.09 0.9766 0.0260 26.89 0.9741 0.0309 27.02 0.9607 0.0277
light PS-NeRF 35.19 0.9925 0.0061 32.85 0.9783 0.0074 36.57 0.9942 0.0026 38.40 0.9943 0.0019 33.73 0.9792 0.0077

Ours 43.21 0.9944 0.0037 37.62 0.9858 0.0048 38.23 0.9946 0.0022 39.32 0.9951 0.0022 35.75 0.9843 0.0063
Multi PS-NeRF 34.27 0.9802 0.0127 31.58 0.9637 0.0114 36.03 0.9871 0.0066 37.76 0.9851 0.0041 31.16 0.9736 0.0202
light Ours 39.78 0.9821 0.0083 34.88 0.9726 0.0090 37.64 0.9890 0.0041 38.86 0.9885 0.0034 32.50 0.9788 0.0204

Table 1. Quantitative comparison of novel-view rendering and relighting on DiLiGenT-MV dataset.

Bear Buddha Cow Pot2 Reading Train Mem.
Method MAE ↓ MAE ↓ MAE ↓ MAE ↓ MAE ↓ time↓ ↓
PhySG 11.35 27.20 16.10 11.98 26.67 20h 13MB

TensoIR 35.93 37.54 30.10 25.68 33.67 6h 68MB
PS-NeRF 4.68 11.92 5.89 7.55 10.64 22h 40MB

Ours 4.35 11.10 4.61 6.71 9.03 2h 5MB

Table 2. Quantitative comparison of normal accuracy, average
training time, and memory footprint on DiLiGenT-MV dataset.
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Figure 3. Comparison of novel view rendering and estimated
normal on DiLiGenT-MV dataset. Our DPIR recovers detailed
surface normals and reproduces accurate appearance.

Photometric Images We then evaluate DPIR on a photo-
metric dataset, which we render using four objects at 300
views with co-located point lights, following the configura-
tion of mobile flash photography [19]. Table 3 and Figure 4
show that DPIR outperforms IRON [33], the-state-of-the-
art inverse rendering method for photometric images, with
higher novel-view relighting quality, 6× faster training, and
5× lower memory footprint.

IRON Ours GT

Figure 4. Comparison of novel-view flashlight relighting. DPIR
successfully reproduces the ground-truth appearance, outperform-
ing IRON.

PSNR↑ SSIM↑ LPIPS↓ MAE↓ Train↓ Mem↓
IRON 31.91 0.9557 0.0446 9.38 12h 28MB
Ours 35.56 0.9734 0.0285 8.74 2h 5MB

Table 3. Quantitative comparison of novel-view relighting, normal
accuracy, training time, and memory footprint on the photometric
dataset.

5. Conclusion
In this paper, we introduced DPIR, a point-based in-
verse rendering method that integrates efficient differen-
tiable point-splatting forward rendering into the analysis-
by-synthesis inverse rendering framework. We have de-
veloped a hybrid point-volumetric geometry representa-
tion, introduced regularized basis BRDFs, and used a
point-based visibility detection method. DPIR jointly op-
timizes the point locations, radii, surface normals, and re-
flectance in a single stage without using any pre-trained
network. Through evaluations, we demonstrate DPIR out-
performs state-of-the-art inverse rendering methods in ac-
curacy, training speed, and memory footprint.

Limitations First, DPIR only models direct reflection
without considering global-illumination effects such as
inter-reflections. Modeling the global-illumination effects
with an efficient global rendering method would be an inter-
esting future work. Second, DPIR does not explicitly model
transmission. Generalizing inverse rendering with bidirec-
tional scattering distribution functions may open up the ap-
plicability of DPIR for more diverse materials.
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