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Abstract

Neural Radiance Fields (NeRFs) have shown great po-
tential in novel view synthesis. However, they struggle to
render sharp images when the data used for training is af-
fected by motion blur. On the other hand, event cameras ex-
cel in dynamic scenes as they measure brightness changes
with microsecond resolution and are thus only marginally
affected by blur. Recent methods attempt to enhance NeRF
reconstructions under camera motion by fusing frames and
events. However, they face challenges in recovering accu-
rate color content or constrain the NeRF to a set of pre-
defined camera poses, harming reconstruction quality in
challenging conditions. This paper proposes a novel for-
mulation addressing these issues by leveraging both model-
and learning-based modules. We explicitly model the blur
formation process, exploiting the event double integral as
an additional model-based prior. Additionally, we model
the event-pixel response using an end-to-end learnable re-
sponse function, allowing our method to adapt to non-
idealities in the real event-camera sensor. We show, on
synthetic and real data, that the proposed approach outper-
forms existing deblur NeRFs that use only frames as well
as those that combine frames and events by +6.13dB and
+2.48dB, respectively.

Multimedial Material: For videos, datasets and more visit
https://github.com/uzh-rpg/evdeblurnerf.

1. Introduction
Neural Radiance Fields (NeRFs) [22] have completely rev-
olutionized the field of 3D reconstruction and novel view
synthesis, achieving unprecedented levels of details [2, 3,
35]. As a result, they have quickly found applications in
many subfields of computer vision and robotics, such as
pose estimation and navigation [29, 44, 49], image process-
ing [11, 20, 23, 38], scene understanding [15, 19, 42], sur-
face reconstruction [1, 39, 45], and many others.

On many occasions, however, images must be captured
while in motion, which can impact picture quality, often re-
sulting in motion blur. In such circumstances, NeRFs strug-
gle to reconstruct sharp radiance fields, thereby hindering
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Figure 1. Ev-DeblurNeRF combines blurry images and events to
recover sharp radiance fields. A motion-aware NeRF recovers mo-
tion and a learnable event camera response function models real
camera’s non-idealities, enabling high-quality reconstructions.

their practical application in real-world scenes. Although
recent works [6, 16, 20, 40] have shown promising results in
reconstructing radiance fields from motion-blurred images
by learning to infer the camera motion during the exposure
time, the task of recovering motion-deblurred NeRFs still
remains significantly ill-posed. Existing image-based ap-
proaches typically fail when the camera undergoes similar
motion trajectories during the exposure of training images
[20], and they are inherently limited by the presence of mo-
tion ambiguities and loss of texture that cannot be recovered
from blurry images alone.

In this regard, recent works have shown that event-based
cameras can substantially aid the task of deblurring standard
images [27, 30, 36, 46], thanks to their ability to measure
brightness changes with microsecond precision and their
robustness to motion blur [10]. Motivated by these advan-
tages, the literature has recently looked into the possibility
of recovering NeRFs from events [4, 12, 14, 25, 26]. While
most of the works [4, 12, 26] focus on event data only, re-
search on fusing motion-blurred images with events is still
limited, with only two prior works [14, 25].

In this work, depicted in Fig. 1, we propose Ev-
DeblurNeRF, a novel event-based deblurring NeRF formu-
lation combining learning and model-based components.
Inspired by E-NeRF [14], it exploits continuous event-by-
event supervision to recover sharp radiance fields. But it
departs from E-NeRF in that it models the blur formation
process explicitly, exploiting the direct relationship between
events triggered during the exposure time and the result-
ing blurred frames, i.e., the so-called Event Double Integral
(EDI) [24]. Unlike E2NeRF [25], our approach employs
this relation as additional training supervision, adding an

https://github.com/uzh-rpg/evdeblurnerf


end-to-end learnable camera response function that enables
diverging from the model-based solution whenever inaccu-
rate, thus resulting in higher-quality reconstructions.

To summarize, our contributions are:
• A novel approach for recovering a sharp NeRF in the

presence of motion blur, incorporating both model-based
priors and novel learning-based modules.

• A model +2.48dB more accurate and 6.9× faster to train
than previous event-based deblurring NeRF methods.

• Two new datasets, one simulated and one collected using
a Color-DAVIS346 [17] event camera, featuring precise
ground truth poses for accurate quality assessment.

2. Related Works
In recent years, event-based cameras have become increas-
ingly popular [8, 21, 32, 33, 41] due to their high dynamic
range and temporal resolution. Several methods have been
proposed to exploit the unique characteristics of event cam-
eras for image deblurring, featuring both model-based ap-
proaches, such as the event-based double integral (EDI)
[24, 24], as well as learning-based ones [9, 13, 30, 31, 37,
43, 47]. Recently, event-based cameras have also been used
to recover sharp NeRFs [12, 26] from events only, or com-
bining event-based cameras with motion-blurred images. E-
NeRF [14] shows that incorporating an event supervision
loss can enhance the recovery of sharp edges, but it strug-
gles to restore sharp colors due to the lack of explicit blur
modeling. Inspired by the success of recent image-only de-
blur NeRFs, such as [6, 16, 20, 40], E2NeRF [25] follows
Deblur-NeRF [20] by modeling the camera motion during
the exposure time. Notably, in our approach, we exploit
continuous event-by-event supervision and employ a novel
learnable camera response function that better adapts to real
data, resulting in improved performance under fast motion.

3. Method
The proposed Ev-DeblurNeRF aims to recover a latent
sharp scene given a sequence of timestamped blurry images
{(Cblur

i , ti)}NI
i=1 and events E = {ej = (uj , tj , pj)}NE

j=1,
specifying that either an increase or decrease in brightness
(as indicated by the polarity pj ∈ {−1, 1}) has been de-
tected at a certain time instant tj and pixel uj = (uj , vj).

Event-Aided Deblur-NeRF. Our architecture takes inspi-
ration from prior works [6, 16, 20], and is depicted in Fig-
ure 2. We aim to recover the scene as a radiance field,
implemented by an MLP FΩ, blindly, by directly model-
ing the blur formation process at each exposure. A blurry
color observation generated by the ray r(u, ti) cast by pixel
u during its exposure can be described as the integral of
the sharp colors observed by the ray in a time interval
∆Ti = [ti − τ/2, ti + τ/2].

Similarly to [16], we learn to estimate the motion of each

ray using a neural module GΦ. We discretize the motion in
a finite set of M observations and learn an SE(3) field that
rigidly warps pixel rays to discrete positions q:

(erq, tq, wq) = GΦ(R(li); T (li);W(li)), (1)

where l ∈ RE is a shared learned image embedding, and R,
T and W are independent MLPs that predict, respectively,
a set of rotation matrices erq ∈ SO(3), translation vectors
tq ∈ R3, and view weights wq ∈ R, one for each discrete
position q. The warped rays can thus be finally obtained as
r̂q = erqr(u, ti) + tq .

Following NeRF [7], we render the color at each ray with
a pair of MLPs, one coarse- and the other fine-grained, F c

Ω

and F f
Ω . Inspired by the hybrid design in [6], we enhance

the capabilities of F c
Ω and F f

Ω by incorporating dedicated
TensoRF [5] volumes, which we employ as additional input
feature spaces for the MLPs. In particular, given a ray ru
and a set of coarse and fine points {xc

k}Sk=1 and {xf
k}Sk=1

along the ray, we first sample feature volumes:

fs
c
k = Vs(x

c
k), fs

f
k = Vs(x

f
k),

fl
c
k = Vl(x

c
k), fl

f
k = Vl(x

f
k),

(2)

with Vs and Vl, respectively, a small and a large TensoRF
[5] volume. We use fs

c
k as additional features in F c

Ω, and
use all of the features with the fine-level MLP F f

Θ.
Volumetric rendering is then finally used to estimate col-

ors Ĉq at the predicted camera positions, which are finally
fused into a blurry observation

Ĉblur(r(u, ti)) = g

(
M−1∑
q=1

wqĈq

)
, (3)

where g(·) is a gamma correction function. Inspired by [16],
we further refine the composite weights using an adaptive
weight proposal network λq = AWP(ζq, li,dq), which
takes the ray’s samples features ζq , directions dq and im-
age embedding li to produce refined weights. We use these
refined weights in Equation (3) in place of wq to obtain re-
fined colors C̃blur.

The thus rendered synthetic blurry pixel is finally super-
vised with a ground truth observation Cgt through:

Eb(Cblur
r ) =

∥∥Cblur
r −Cblur

gt (r)
∥∥2
2

(4)

Lblur =
1

|Rb|

∑
r∈Rb

Eb(Ĉblur
rc ) + Eb(Ĉblur

rf
) + Eb(C̃blur

rf
), (5)

where we consider a batch of pixels Rb, and rewrite Cblur
r =

Cblur(r). The subscripts c and f indicate values obtained
through F c

Ω or F f
Ω , and ˜ if adaptive weights are used.

Event-based supervision via learned event-CRF. We
now exploit blur-free microsecond-level event measure-
ments. Let’s denote the brightness at a pixel u on a given
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Figure 2. For each given ray r(u, t), we estimate a set of warped rays rq using GΦ. We then render blurry colors through weighted
averaging with Lblur, by evaluating FΩ and additional explicit features V . We supervise the color at mid-exposure through LEDI by
recovering a prior-based sharp color using the event double integral, considering all events in the exposure time. Finally, we sample a pair
of two consecutive events, and supervise their brightness difference, modulated by eCRF, using the observed polarity value via Lev .

time t as I(u, t). An event ej indicates that at time tj ,
the log-brightness has changed by pj · Θpj

from the last
time tj−1 an event has been generated from the pixel. The
quantity Θpj

∈ R+ is a predefined threshold that con-
trols the sensitivity to brightness. It follows that L(u, tj)−
L(u, tj−1) = pj ·Θpj , where we shorten log(I(·)) as L(·).

We compute the left-hand side through volumetric ren-
dering, while we take the right-hand side as a ground truth
supervision, given recorded event pairs. In particular, we
estimate the log-brightness at each event ej , observed by
the pixel u at time tj , as:

L̂(u, tj) = log(h(eCRFΨ(Ĉ(rj), pj))), (6)

where we obtain Ĉ(rj) via volumetric rendering [22] by
rendering the ray rj = r(u, tj) cast from the camera pose
T(tj) ∈ SE(3), approximated via spherical linear inter-
polation [28] of the available known camera poses. Here,
eCRFΨ is an MLP that produces a modulated signal Ĉe ∈
R3 from the rendered color Ĉ and the polarity pj , while
h(·) is a luma conversion function [34].

Given a pair of consecutive events at time tj−1 and tj ,
we compute Levent as follows:

Ee(∆L̂t
u) =

∥∥∥∆L̂t
u −∆Lt

u

∥∥∥2
2

(7)

Levent =
1

|Ue|

∑
(t,u)∈Ue

Ee(∆L̂t
uc
)+Ee(∆L̂t

uf
)+Ee(∆L̃t

uf
) (8)

where we use the compact form L̂t
u for L̂(t,u), and ap-

ply the supervision on both fine and coarse levels, as well
as on adaptively refined colors. Ue selects pairs of pixels
u and timestamps t corresponding to received events. Our

proposed event CRF function eCRFΨ learns to compen-
sate for potential mismatches between the ideal model and
that of the camera at hand, filling the gap between the RGB
color space and that of the event sensor.
Double integral supervision. The eCRF just introduced
provides an effective way of handling unmodeled event
pixel behaviors. However, blindly recovering the event
camera response to colors is not trivial since the only di-
rect source of color supervision comes from Equation (4).
Inspired by recent works [18], which exploit additional pri-
ors, we propose here to exploit a model-based deblurring
solution to further constrain the NeRF training. In particu-
lar, we first deblur training images utilizing the event-based
double integral (EDI) [24, 24], which exploits the relation-
ship between a blurry image and the events triggered during
its exposure. We thus obtain CEDI

r deblurred colors corre-
sponding to every original ray r = r(u, ti) in Rb, sampled
when optimizing Eq. (4). We use this color as a prior:

EEDI(Ĉr) =
∥∥∥Ĉr −CEDI

r

∥∥∥2
2

(9)

LEDI =
1

|Rb|

∑
r∈Rb

EEDI(Ĉrc) + EEDI(Ĉrf ) (10)

4. Experiments
We evaluate our method on four synthetic scenes de-
rived from the original DeblurNeRF [20] work, as well
as a novel dataset composed of 5 scenes captured with a
Color-DAVIS346 [17], mounted on a motor-controlled lin-
ear slider that moves the camera and collects ground truth
poses. Additional details on the training and the datasets,
named Ev-DeblurBlender and Ev-DeblurCDAVIS, are pro-
vided in the supplementary material. We evaluate our



Table 1. Quantitative comparison on the synthetic Ev-DeblurBlender dataset. Best results are reported in bold.

FACTORY POOL TANABATA TROLLEY AVERAGE
PSNR↑ LPIPS ↓ SSIM↑ PSNR↑ LPIPS ↓ SSIM↑ PSNR↑ LPIPS ↓ SSIM↑ PSNR↑ LPIPS ↓ SSIM↑ PSNR↑ LPIPS ↓ SSIM↑

DeblurNeRF [20] 24.52 0.25 0.79 26.02 0.34 0.69 21.38 0.28 0.71 23.58 0.22 0.79 23.87 0.27 0.74
BAD-NeRF [40] 21.20 0.22 0.64 27.13 0.23 0.70 20.89 0.25 0.65 22.76 0.18 0.73 22.99 0.22 0.68

PDRF [6] 27.34 0.17 0.87 27.46 0.32 0.72 24.27 0.20 0.81 26.09 0.15 0.86 26.29 0.21 0.81
DP-NeRF [16] 26.77 0.20 0.85 29.58 0.24 0.79 27.32 0.11 0.85 27.04 0.14 0.87 27.68 0.17 0.84

ENeRF [14] 22.46 0.19 0.79 25.51 0.28 0.72 22.97 0.16 0.83 21.07 0.20 0.80 23.00 0.21 0.79
E2NeRF [25] 24.90 0.17 0.78 29.57 0.18 0.78 23.06 0.19 0.74 26.49 0.10 0.85 26.00 0.16 0.78

(Ours) Ev-DeblurNeRF 31.79 0.06 0.93 31.51 0.14 0.84 28.67 0.08 0.90 29.72 0.07 0.92 30.42 0.08 0.90

Table 2. Quantitative comparison on the real-world Ev-DeblurCDAVIS dataset. Best results are reported in bold.

BATTERIES POWER SUPPLIES LAB EQUIPMENT DRONES FIGURES AVERAGE
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

DP-NeRF [16] + TensoRF [5] 26.64 0.27 0.81 25.74 0.32 0.77 27.49 0.31 0.80 26.52 0.30 0.81 27.76 0.34 0.77 26.83 0.31 0.79
EDI [24] + NeRF 28.66 0.12 0.87 28.16 0.09 0.88 31.45 0.13 0.89 29.37 0.10 0.88 31.44 0.12 0.88 29.82 0.11 0.88

E2NeRF 30.57 0.12 0.88 29.98 0.11 0.87 30.41 0.16 0.86 30.41 0.14 0.87 31.03 0.14 0.85 30.48 0.13 0.87
(Ours) Ev-DeblurNeRF 33.17 0.05 0.92 32.35 0.06 0.91 33.01 0.08 0.91 32.89 0.05 0.92 33.39 0.07 0.90 32.96 0.06 0.91

DP-NeRF Ours Ground Truth DP-NeRF Ours Ground Truth

Figure 3. Qualitative comparison on the Ev-DeblurBlender (left) and Ev-DeblurCDAVIS (right) datasets.

method against Deblur-NeRF [20], BAD-NeRF [40], DP-
NeRF [16] and PDRF [6]. Finally, we also consider event-
based NeRFs, such as E-NeRF [14] and E2NeRF [25].

Results. We report results on Ev-DeblurBlender in Ta-
ble 1. Our proposed approach largely outperforms all other
baselines, both event-based and frame-based. Compared to
DP-NeRF [16], which uses a similar backbone architecture,
our method achieves on average a +3.34dB higher PSNR,
a 52.9% lower LPIPS [48] and 7.14% higher SSIM, high-
lighting the improvement gained by effectively integrating
event-based supervision. Notably, ENeRF [14], which does
not explicitly model the blur formation process, struggles
to recover sharp color information, while E2NeRF [25], ex-
clusively employing event supervision during the exposure
time, fails at fully exploiting event-based data.

Results on Ev-DeblurCDAVIS are reported in Table 2,
where we select the top-performing NeRF models from the
previous evaluation, namely E2NeRF [25] and DP-NeRF
[16], which we modify here by integrating the TensoRF
modules discussed in Section 3 for a better comparison. Ad-
ditionally, we include results obtained by initially deblur-
ring images using the model-based EDI deblurring method,
followed by NeRF. An extended analysis including all other
baselines is provided in the supplementary materials. Once

again, our proposed approach significantly outperforms all
baselines, exhibiting an improvement of +2.5dB in PSNR
and a 4.6% increase in SSIM. A qualitative comparison is
provided in Figure 3 and in the supplementary materials.

5. Conclusions
We present Ev-DeblurNeRF, a novel deblur NeRF architec-
ture that integrates a learnable event-based camera response
function and ad-hoc event-based supervision that facilitates
fine-grained details recovery. Ev-DeblurNeRF, despite be-
ing supervised by model-based priors, can adapt to non-
idealities in the camera response, potentially departing from
the model-based solution. We validate our method on both
synthetic and real data, achieving an increase of +4.42dB
and +2.48%dB in PSNR, respectively, when compared to
the previous best-performing event-based baseline, and an
increase of +2.74dB and +6.13dB when compared to the
top-performing image-only baseline.
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