
Mitigating Motion Blur in Neural Radiance Fields with Events and Frames
Supplementary Material

Marco Cannici and Davide Scaramuzza

Robotics and Perception Group, University of Zurich, Switzerland

1. Implementation Details

Training. We implement Ev-DeblurNeRF building upon
the DP-NeRF [5] official codebase implemented in PyTorch
[10], and incorporating additional features from PDRF [2]
and TensoRF [1]. We train both our Ev-DeblurNeRF
network and the baselines on full-resolution images us-
ing either an NVIDIA V100, an NVIDIA RTX A6000,
or an NVIDIA A100 GPU. In particular, we use 600 ×
400 images for Ev-DeblurBlender and 346 × 260 for Ev-
DeblurCDAVIS. Similar to [2, 5, 8], we warm up the train-
ing for the first 1, 200 iterations, by using at first only the
LEDI and Lev losses and without utilizing the eCRF mod-
ule. Subsequently, we introduce Lblur, along with the pro-
posed eCRF , which we initialize as the identity function,
and the blur estimation module GΦ, keeping the λ param-
eters (λb = λEDI = 1, and λe = 0.1) fixed for the en-
tire duration of the training. To implement LEDI , we pre-
compute Cr

EDI images using Eq. (4) and directly sample
them during training. When using the Lev-color loss, we
weigh the events’ contributions by 0.4, 0.2, or 0.4 depend-
ing on whether the event corresponds to a red, green, or
blue channel, as green pixels appear twice as often in an
RGBG Bayer pattern. We use symmetric constant thresh-
olds for the events, setting Θ = 0.2 for synthetic events,
and Θ = 0.25 when using a real camera.

Architecture. The motion estimation module GΦ is imple-
mented following DP-NeRF [5] hyperparameters’ choice,
and using M = 9 exposure poses. Differently from [5],
we implement the image embedding li using a simple set of
learnable 32-dimensional parameters, instead of predicting
them through an additional 4-layers MLP. We found this de-
sign to be easier to optimize and yield overall better results.
We follow [5] to implement the refinement AWP module
and employ the coarse-to-fine scheduling strategy to weight
Ĉblur

rf
and C̃blur

rf
in Lblur. However, we weigh their contribu-

tion equally in Lev through the whole training, as we found
the coarse-to-fine scheduling strategy not to improve the re-
sults. We implement F c

Ω as a 2-layers MLP with ReLU acti-
vation, hidden dimension 64, and output dimension 16, fol-
lowed by a 3-layers MLP with the same activation and hid-

den dimension, but output dimension 3. We use one of the
output channels of the first MLP as the predicted density,
while the rest is used by the second MLP to predict col-
ors. The structure of F f

Ω is analogous, but we use an output
dimension of 128 for the first MLP and a 256 hidden dimen-
sion for both MLPs. We implement Vs and Vl with vector-
matrix decomposition [1], using 16.7 million voxels in Vs

and 134.2 million voxels in Vl, and setting to {64, 16, 16}
the channel dimensions of the decomposed {X,Y, Z} axes
in both Vs and Vl. The proposed Ev-DeblurNeRF architec-
ture trains in around 3 hours and 30 minutes on an NVIDIA
A100 GPU.

Ev-DeblurBlender dataset. We evaluate our method on
four synthetic scenes derived from the original DeblurN-
eRF [8] work, namely, factory, pool, tanabata, and trol-
ley. We exclude cozy room from our conversion as the
Blender rendering for this scene relies on an image de-
noising post-processing step. This step causes the rendered
images to show temporally inconsistent artifacts when ren-
dered at high FPS, thereby causing unrealistic event simu-
lation. Differently from [8], where blurry images are ob-
tained by randomly moving the camera at each pose, we
use a single fast continuous motion, derived from DeblurN-
eRF’s original poses, lasting around 1s. We simulate a 40ms
exposure time by averaging together, in linear RGB space,
images rendered at 1000 FPS. We then use the same set of
images to generate synthetic events using event simulation
[12], making use of a balanced Θ = 0.2 event threshold and
monochrome events.

Ev-DeblurCDAVIS dataset. Given the lack of real-
world datasets for event-based NeRF deblur that incorpo-
rate ground truth sharp reference images for quantitative as-
sessment, we introduce a novel dataset composed of 5 real-
world scenes. We use the Color-DAVIS346 [6] camera for
recording, which captures both color events and standard
frames at 346 × 260 pixel resolution using a RGBG Bayer
pattern. We mount the camera on a motor-controlled lin-
ear slider to capture frontal-facing scenes and use the motor
encoder to obtain poses at 100 Hz. We configure the Color-
DAVIS346 with a 100ms exposure time and collect ground
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Table 3. Extended quantitative comparison on the real-world Ev-DeblurCDAVIS dataset. Best results are reported in bold.

BATTERIES POWER SUPPLIES LAB EQUIPMENT DRONES FIGURES AVERAGE
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

BAD-NeRF* [16] 27.32 0.26 0.82 26.42 0.32 0.79 27.84 0.31 0.81 26.96 0.31 0.81 28.21 0.35 0.77 27,.5 0.31 0.80
DP-NeRF [5] + TensoRF [1] 26.64 0.27 0.81 25.74 0.32 0.77 27.49 0.31 0.80 26.52 0.30 0.81 27.76 0.34 0.77 26.83 0.31 0.79

PDRF [2] 26.82 0.25 0.81 25.79 0.31 0.77 27.70 0.31 0.81 26.72 0.29 0.81 27.80 0.33 0.77 26.96 0.30 0.79
MPRNet [17] + NeRF 27.99 0.21 0.83 26.89 0.23 0.78 27.20 0.28 0.80 26.98 0.23 0.80 28.51 0.29 0.79 27.52 0.25 0.80
PVDNet [14] + NeRF 24.65 0.30 0.72 23.50 0.30 0.66 25.04 0.32 0.72 24.21 0.31 0.69 25.92 0.33 0.72 24.66 0.31 0.70
EFNet [15] + NeRF 29.85 0.13 0.88 29.10 0.13 0.87 30.28 0.18 0.88 29.72 0.14 0.88 30.62 0.17 0.85 29.91 0.15 0.87

EDI [9] + NeRF 28.66 0.12 0.87 28.16 0.09 0.88 31.45 0.13 0.89 29.37 0.10 0.88 31.44 0.12 0.88 29.82 0.11 0.88
ENeRF [4] 27.85 0.26 0.73 27.91 0.21 0.76 27.79 0.25 0.73 28.28 0.25 0.77 29.05 0.18 0.77 28.17 0.23 0.75

E2NeRF [11] 30.57 0.12 0.88 29.98 0.11 0.87 30.41 0.16 0.86 30.41 0.14 0.87 31.03 0.14 0.85 30.48 0.13 0.87
(Ours) Ev-DeblurNeRF 33.17 0.05 0.92 32.35 0.06 0.91 33.01 0.08 0.91 32.89 0.05 0.92 33.39 0.07 0.90 32.96 0.06 0.91

Table 4. Extended study on motor encoder’s vs. COLMAP’s poses on Ev-DeblurCDAVIS. Best results in bold, second-best underlined.

Train Test-time BATTERIES POWER SUPPLIES LAB EQUIPMENT DRONES FIGURES
poses refine PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

Ours Motor – 33.17 0.05 0.92 32.35 0.06 0.91 33.01 0.08 0.91 32.89 0.52 0.92 33.39 0.07 0.90
Ours Motor ✓ 33.10 0.05 0.92 32.31 0.06 0.91 33.05 0.08 0.91 32.77 0.05 0.92 33.58 0.08 0.90
Ours COLMAP ✓ 33.43 0.05 0.93 32.18 0.06 0.91 33.01 0.08 0.91 32.69 0.05 0.91 33.88 0.06 0.91

truth still images first, followed by a fast motion. Scenes
feature 11 to 18 blur training views and 5 ground truth sharp
poses with both seen and unseen views.

2. Extended Analysis on Ev-DeblurCDAVIS
State-of-the-art comparison. Section 4 of the paper pro-
vides an analysis on the Ev-DeblurCDAVIS dataset focused
on the top-performing architectures selected from the syn-
thetic evaluation. For completeness, we report in Table 3
of this supplementary material a comprehensive evaluation
against all other baselines used in the paper. The trend fol-
lows that of the synthetic analysis, where we also include
baselines where the blurry images are first deblurred using
an image-only network, such as MPRNet [17] and PVD-
Net [14], or a network making use of events, i.e. EFNet
[15]. We designed the Ev-DeblurCDAVIS dataset in such
a way as to ensure reliable ground truth collection, but
also to showcase the ability of our network to tackle a
known limitation of image-only DeblurNeRF-like architec-
tures. While these networks work particularly well on ran-
dom motion patterns, they fail in the presence of consis-
tent blur, i.e., when the motion pattern is similar in each
exposure. This is the case of Ev-DeblurCDAVIS, where
image-only baselines such as DP-NeRF [5] and PDRF [2]
struggle to remove blur (see Figures 5 and 8 of this supple-
mentary material and Figure 3 of the paper). For similar
reasons, BAD-NeRF diverges after a few training iterations
on this dataset. We address this by fixing the rotation ma-
trix to ground truth and optimizing the translation vector
only (reported as BAD-NeRF* in the table). Despite this,
our method still significantly outperforms BAD-NeRF. Our
architecture, indeed, eliminates ambiguities in motion es-
timation as it leverages additional event-based supervision
to further constrain the NeRF recovery, resulting in signifi-
cantly higher performance.
Event-by-event vs. Event-window loss. In this section,
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Figure 4. Analysis on event-by-event vs. event-batch losses.

utilizing our Ev-DeblurNeRF network, we examine the im-
pact of implementing event supervision on an event-by-
event basis, as we suggest in the paper and proposed in
[4, 7], in contrast to accumulating events occurring over
temporal windows [3, 13], as well as applying supervi-
sion only at specific times during the exposure time, as in
E2NeRF [11]. Results are reported in Figure 4. As the su-
pervision frequency decreases, especially in sparse training
views regimes, the performance also decreases. This ob-
servation aligns with the findings in [7], which suggest that
noise effects and threshold variations in the event stream
amplify with event accumulation, ultimately leading to a de-
crease in overall performance. Moreover, when only a few
images are available for training, leveraging the continu-
ous event stream to propagate absolute brightness measure-
ments across unseen image views proves crucial for achiev-
ing top performance. Leveraging event-by-event supervi-
sion and incorporating a learnable camera response function
to mitigate noise effects, our approach achieves the best per-
formance compared to other solutions.

COLMAP poses on real scenes. Experiments on Ev-
DeblurCDAVIS presented in the paper make use of the
poses obtained from the motor encoder, which tracks the
camera’s movement along the slider. However, in a typical



Table 5. Quantitative comparison on the synthetic Ev-DeblurBlender dataset. Best results are reported in bold.

FACTORY POOL TANABATA TROLLEY AVERAGE
PSNR↑ LPIPS ↓ SSIM↑ PSNR↑ LPIPS ↓ SSIM↑ PSNR↑ LPIPS ↓ SSIM↑ PSNR↑ LPIPS ↓ SSIM↑ PSNR↑ LPIPS ↓ SSIM↑

DeblurNeRF [8] 24.52 0.25 0.79 26.02 0.34 0.69 21.38 0.28 0.71 23.58 0.22 0.79 23.87 0.27 0.74
BAD-NeRF [16] 21.20 0.22 0.64 27.13 0.23 0.70 20.89 0.25 0.65 22.76 0.18 0.73 22.99 0.22 0.68

PDRF [2] 27.34 0.17 0.87 27.46 0.32 0.72 24.27 0.20 0.81 26.09 0.15 0.86 26.29 0.21 0.81
DP-NeRF [5] 26.77 0.20 0.85 29.58 0.24 0.79 27.32 0.11 0.85 27.04 0.14 0.87 27.68 0.17 0.84

MPRNet [17] + NeRF 19.09 0.37 0.56 25.49 0.39 0.64 17.79 0.42 0.51 19.82 0.31 0.62 20.55 0.37 0.58
PVDNet [14] + NeRF 22.50 0.29 0.71 23.89 0.43 0.52 20.26 0.33 0.64 22.49 0.25 0.74 22.28 0.32 0.65
EFNet [15] + NeRF 20.91 0.32 0.63 27.03 0.31 0.73 20.68 0.31 0.64 21.69 0.25 0.69 22.58 0.30 0.67

EFNet* [15] + NeRF 29.01 0.14 0.87 29.77 0.18 0.80 27.76 0.11 0.87 29.40 0.94 0.89 28.99 0.34 0.86
ENeRF [4] 22.46 0.19 0.79 25.51 0.28 0.72 22.97 0.16 0.83 21.07 0.20 0.80 23.00 0.21 0.79

E2NeRF [11] 24.90 0.17 0.78 29.57 0.18 0.78 23.06 0.19 0.74 26.49 0.10 0.85 26.00 0.16 0.78
(Ours) Ev-DeblurNeRF- - 32.84 0.05 0.94 31.45 0.14 0.84 29.20 0.06 0.92 30.60 0.06 0.93 31.02 0.08 0.91
(Ours) Ev-DeblurNeRF 31.79 0.06 0.93 31.51 0.14 0.84 28.67 0.08 0.90 29.72 0.07 0.92 30.42 0.08 0.90

real-world setting, access to such precise camera poses may
not be possible, although they are required by our method
to work. In this section, we investigate a more general sce-
nario where training poses are estimated using COLMAP
instead of relying on the motor encoder.

Inspired by [11], we deblur training images using the
EDI in Eq. (4) of the paper and then use COLMAP to
estimate their poses. Analogous to the experiments con-
ducted in the paper, we use spherical linear interpolation
of the COLMAP poses to obtain poses at events’ times-
tamps during training. At test time, we obtain the test poses
by aligning the ground truth trajectory with that estimated
with COLMAP. Since the two trajectories might not per-
fectly align, we further refine the alignment via gradient
descent before computing metrics, as done in BAD-NeRF
[16], to ensure pixel-perfect aligned test poses. We also in-
clude results of our method trained on encoder poses but
evaluated using refined test poses. Results are presented in
Table 4. Our method using COLMAP poses yields results
comparable to those obtained using motor encoder poses,
thus proving its potential in scenarios where accurate poses
are not available. While performance degradation may oc-
cur in scenarios with more complex motion than that found
in the Ev-DeblurCDAVIS dataset, further investigation into
this aspect is left for future research endeavors.

3. Extended Analysis on Ev-DeblurBlender
State-of-the-art comparison. We provide an extended
analysis on the Ev-DeblurBlender in Table 5. In partic-
ular, we test a second version of our network, which we
call Ev-DeblurNeRF- -, that does not make use of the pro-
posed eCRF module and EDI supervision. We found Ev-
DeblurNeRF- - to exhibit on average a slightly superior per-
formance on this data. As discussed in Section 3 of the
paper, indeed, we designed the eCRF specifically to han-
dle possible variations between RGB and events’ response
functions, as well as to compensate for mismatches on the
event generation model. These issues are not predominant
in simulated data, which explains why adding a learnable
response function does not improve performance.

Table 6. Ablation study on Ev-DeblurCDAVIS.

Vc,f Lev Lev−color LEDI eCRF eCRF w/ p PSNR↑ LPIPS↓ SSIM↑
✓ 27.55 0.26 0.80
✓ ✓ 28.24 0.14 0.85
✓ ✓ ✓ 29.28 0.12 0.85
✓ ✓ ✓ ✓ 32.43 0.10 0.91
✓ ✓ ✓ ✓ 30.77 0.11 0.86
✓ ✓ ✓ ✓ ✓ 32.90 0.07 0.91
✓ ✓ ✓ ✓ ✓ ✓ 33.17 0.07 0.91

✓ ✓ ✓ ✓ ✓ 33.03 0.08 0.91

Furthermore, we include baselines where we first deblur
images using single-image and video deblurring methods,
as well as methods making use of events. Here, we also
finetune EFNet [15] on real data by each time fine-tuning
the network on the other three scenes before deblurring the
fourth, reported as EFNet∗. These baselines all achieve
inferior performance than the proposed Ev-DeblurNeRF,
highlighting the potential of using events for recovering
sharp NeRFs. This is also evident when considering base-
lines utilizing an image-deblurring stage prior to NeRF
training, which indeed achieve better performance when
events are used, such as in the case of EFNet [15].

4. Additional Results

Ablations. We study in Table 6, the contribution of all
the modules introduced in Section 3, using a scene derived
from the Figures sample of Ev-DeblurCDAVIS. Adding
event supervision from Equation (8) improves PSNR by
+0.69dB, which is further increased by +1.04dB when
the events’ color channel is considered. Similarly, adding
LEDI in Equation (10) as well as the proposed eCRF mod-
ule, with and without additional polarity features, also re-
sults in increased performance. Performance increases in
both cases, with a +3.15dB increase when adding LEDI

and a +1.49dB when adding the eCRF. The highest per-
formance is achieved when both are combined and when
the eCRF also utilizes polarity as input, with an increase
of +0.74dB, and an overall improvement of +5.62dB in
PSNR with respect to only using images. We finally vali-



Vs,l Lev-col LEDI eCRF eCRF w/p PSNR
✓ – – – – 27.55

Vs,l Lev-col LEDI eCRF eCRF w/p PSNR
✓ ✓ – – – 29.28

Vs,l Lev-col LEDI eCRF eCRF w/p PSNR
✓ ✓ – ✓ – 30.77

Vs,l Lev-col LEDI eCRF eCRF w/p PSNR
✓ ✓ ✓ ✓ ✓ 33.17 Ground Truth

Figure 5. Qualitative ablation study of the main components of the proposed Ev-DeblurNeRF network. Tables below each picture are
drawn from Table 3 of the paper, and report the configuration used and the PSNR metric achieved in each case.
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Figure 6. Robustness to motion blur analysis on the factory sample of Ev-DeblurBlender (left). Figures on the right show a qualitative
comparison between DP-NeRF and Ev-DeblurNeRF among different exposures.
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Figure 7. Analysis on the robustness to model mismatches.

date the use of Vc,f on the full configuration. Using explicit
features guarantees faster training times without sacrificing
performance. We obtain a slight boost in PSNR and LPIPS
but, most notably, a ×10.8 speedup in training convergence.
This model only takes around 3 hours and 30 minutes for
training on an NVIDIA A100 GPU, while the same net-
work without Vc,f takes around 38 hours on the same hard-
ware, as it requires more iterations at a lower learning rate.
Moreover, in comparison to E2NeRF, which takes around
24 hours to train, our model is 6.9 times faster.

Effect of using eCRF. In Figure 5 we complement the ab-
lation study with a qualitative assessment of our network’s
key components. Notably, incorporating event supervision

significantly aids in the recovery of sharp details, as ev-
ident when comparing the first two settings in Figure 5.
The performance further increases when adding the pro-
posed eCRF module, as can be noticed in the checker-
board patterns on the background, the globe in the fore-
ground, and the facial details of the figures. However, as
discussed in the main paper, this improvement comes at
the cost of over-augmented details and increased contrast,
which are not present in the ground truth reference images.
We attribute this phenomenon to the under-constrained op-
timization setting, which allows the eCRF module to freely
augment these details as long as they appear correct once
blurred though Lblur. We solve this issue by adding an addi-
tional prior, in the form of LEDI, which further constrains
the network in reconstructing accurate details. The im-
proved quality is clearly demonstrated in Figure 5, where
over-augmented details are removed, but without compro-
mising essential details.

Robustness to blur. In Figure 6 of this document, we
compare our Ev-DeblurNeRF network against the top-
performing image-based baselines under different blur.
We utilize the factory sample of the EV-DeblurBlender
dataset for this analysis since it allows us to easily con-
trol the blur intensity, and it does not constitute a corner
case for the image-only baselines. We change the expo-
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sure time τ of the simulated camera in the range τ ∈
{5, 10, 20, 30, 40}, which results in an average pixel dis-
placement of {3, 5, 11, 16, 20}, and a maximum displace-
ment of {15, 24, 50, 75, 96} in each configuration, respec-

tively. The quantitative and qualitative comparison in Fig-
ure 6 shows that using events not only helps in cases of ex-
treme motion but also helps when the motion is not extreme.
While image-only baselines recover details blindly, by try-



ing to estimate the blur formation through a limited set of
camera poses, our network can achieve higher-quality re-
sults as it exploits blur-free information carried by events at
microseconds resolution. Notably, our solution shows great
robustness to motion blur, while image-only performance
decreases significantly as the blur increases. While these
results consider synthetic data, where the effect of noise
and non-idealities is limited, they underscore the promise of
event cameras as complementary sensors for attaining high-
quality image synthesis even in non-ideal conditions.

Robustness to model mismatches. In this section, we an-
alyze the proposed eCRF module in terms of increased ro-
bustness to model mismatches. We do so in a real setup,
i.e., on the figures sample of the Ev-DeblurCDAVIS dataset,
by analyzing the sensitivity of our network to the Θ event-
camera threshold. While in the paper we select Θ via man-
ual inspection, i.e., by utilizing the event double integral [9]
as visual feedback following [9], we evaluate here the per-
formance of our model when the Θ used in Levent deviates
from this value. We compare our network against a con-
figuration that does not use the proposed eCRF , as well
as a network where we also remove LEDI. Results are re-
ported in Figure 7. By acting in between the rendered color
space and the Levent, eCRF can modulate the brightness,
or color, L̂t used for computing the loss, acting as a resid-
ual between the model-based supervision and the brightness
actually perceived. As a result, our solution achieves in-
creased consistency across different choices of Θ, showcas-
ing its ability to deviate from the model-based solution in
case needed.

5. Qualitative Results

We conclude this supplementary material by including ex-
tended qualitative results. In Figure 8, we complement
Figure 3 of the paper by comparing the proposed method
against top-performing networks across all remaining sam-
ples on the Ev-DeblurBlender and Ev-DeblurCDAVIS.
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