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Figure 1. Given images under different camera pose and light positions (a), our method learns the neural radiance fields that enable novel
view synthesis and relighting (b), and intrinsic decomposition (c) simultaneously. Other image editing applications (d), such as reflectance
editing, reflectance editing + relighting, and shading editing (simulating two lights), can also be employed.

Abstract

The task of extracting intrinsic components, such as re-
flectance and shading, from neural radiance fields is of
growing interest. However, current methods largely fo-
cus on synthetic scenes and isolated objects, overlooking
the complexities of real scenes with backgrounds. To ad-
dress this gap, our research introduces a method that com-
bines relighting with intrinsic decomposition. By leverag-
ing light variations in scenes to generate pseudo labels, our
method provides guidance for intrinsic decomposition with-
out requiring ground truth data. Our method, grounded
in physical constraints, ensures robustness across diverse
scene types and reduces the reliance on pre-trained mod-
els or hand-crafted priors. We validate our method on both
synthetic and real-world datasets, achieving convincing re-
sults. Furthermore, the applicability of our method to image
editing tasks demonstrates promising outcomes.

1. Introduction
Recent advances in neural rendering have made significant
strides in novel view synthesis [20, 23], ranging from small
objects to large-scale scenes. Concurrently, there has been
an exploration towards scene editing [35], such as recol-
oring [37] and relighting [21, 38]. To facilitate editing, it
often becomes necessary to decompose scenes into editable

sub-attributes. Within the task of scene decomposition into
geometry, reflectance, and illumination using neural render-
ing, two lines of work are particularly noteworthy: inverse
rendering and intrinsic decomposition.

The first approach [15, 36, 39, 40] integrates inverse ren-
dering with neural rendering methods for scene decomposi-
tion. They often employ the BRDF model, such as the sim-
plified Disney BRDF model[3], to model material proper-
ties and jointly optimize geometry, BRDF, and environmen-
tal lighting. However, inverse rendering presents a highly
ill-posed challenge: separating material properties and illu-
mination in images often yields ambiguous results, and trac-
ing light within scenes is computationally intensive. These
factors limit inverse rendering to object-specific scenarios.

The second approach [37], based on intrinsic
decomposition[2], aims to provide an interpretable
representation of a scene (in terms of reflectance and
shading) suitable for image editing. It can be considered
a simplified variant of inverse rendering, making it more
applicable to a broader range of scenarios, including indi-
vidual objects and more complex scenes with backgrounds.
However, despite simplifications over inverse rendering,
previous attempts at applying intrinsic decomposition
to neural rendering have shown limited success. This
motivates our work in this paper.

Our inspiration is drawn from the idea of using neural
rendering to combine relighting and intrinsic decomposi-



tion, aiming not only to enhance the quality of intrinsic de-
composition but also to expand editing capabilities. Just as
experts in mineral identification illuminate specimens from
various angles to reveal their features, varying light source
positions are essential for uncovering a scene’s intrinsic de-
tails. In fact, the connection between relighting and intrin-
sic decomposition has been discussed in previous works on
2D images [17, 18], but it has yet to be explored in neural
rendering. Additionally, the field of neural rendering has
significantly explored relighting [30, 38]. While IntrinsicN-
eRF [37] has pioneered the integration of intrinsic decom-
position within NeRF, they have not utilized relighting or
fully leveraged the 3D information available through neural
rendering. Instead, we focus on physics-based constraints
to enhance the intrinsic decomposition performance.

In this paper, we propose a two-stage method. In the
first stage, we train a neural implicit radiance representa-
tion to enable novel view synthesis and relighting. Based
on the results of this stage, we calculate normals and light
visibility for each training image, which allows us to de-
velop a method for generating pseudo labels for reflectance
and shading. In the second stage, we treat reflectance and
shading as continuous functions parameterized by Multi-
Layer Perceptrons (MLPs). During training, we apply con-
straints based on physical principles and our pseudo labels.
Notably, our approach does not depend on any pre-trained
models or ground truth data for intrinsic decomposition, yet
achieves convincing results, as shown in Fig. 1. Our contri-
butions are summarized as follows:
• We propose a method that integrates relighting with in-

trinsic decomposition, allowing for novel view synthesis,
lighting condition altering, and reflectance editing.

• We propose a method to generate pseudo labels for re-
flectance and shading through neural fields that integrate
multiple lighting conditions.

• Our method, applied to NeRF scenes, operates free from
data-driven priors. It factorizes the scene into reflectance,
shading, and a residual component, proving effective even
in the presence of strong shadows.

2. Related Work
Intrinsic decomposition. Intrinsic decomposition is a clas-
sical challenge in computer vision [2], with much of the pre-
vious research focused on the 2D image[1, 4, 6, 19]. A key
difficulty in this area is the scarcity of real datasets, which
need complicated and extensive annotation. This limita-
tion has spurred interest in semi-supervised and unsuper-
vised techniques[17, 18, 22]. IntrinsicNeRF [37] has been
a pioneer in applying intrinsic decomposition to neural ren-
dering. Similar to previous unsupervised methods in 2D,
it utilizes hand-crafted constraints, including chromaticity
and semantic constraints, for guidance. However, these con-
straints do not accurately reflect physical principles and of-

ten fall short in complex scenarios. Our approach leans on
3D information and physical constraints (e.g., variations in
illumination) to achieve superior results.
Relighting. Relighting has recently garnered attention
from various perspectives within the field [7]. Data-driven
approaches have been explored, with research focusing
on portrait scenes [14, 26, 27, 32, 41] and extending to
more complex scenarios [8, 13, 25, 29, 34]. Kocsis et al.
[16] have also investigated lighting control within diffusion
models, enabling the generation of scenes under varying
lighting conditions. Meanwhile, relighting has also received
widespread attention within the field of neural rendering
[10, 31, 33, 38], achieving impressive relighting outcomes
within individual scenes.

3. Method
Under the Lambertian assumption, images can be decom-
posed into reflectance and shading components [2, 4, 9].
However, real-world scenes often require a residual term to
account for discrepancies [11, 37]. Thus, we model intrinsic
decomposition as follows:

I(i, j) = R(i, j)⊙ S(i, j) +Re(i, j) (1)

where R, S and Re denote Reflectance, Shading and Resid-
ual, respectively.

Our method extends implicit neural representation for re-
lighting and intrinsic decomposition. We propose a two-
stage approach, illustrated in Fig. 2. In the first stage, we
train our model to represent scenes under varying camera
positions and lighting conditions, enabling novel view syn-
thesis and relighting. We then apply three steps to gener-
ate pseudo labels for reflectance and shading. In the sec-
ond stage, we expand the model to decompose intrinsics us-
ing these pseudo labels as constraints. Our proposed model
achieves novel view synthesis, relighting, and intrinsic de-
composition simultaneously.

3.1. Stage 1: Learning to Relight

We use 3D hash grids [20, 24] to represent geometry and a
small MLP to model color, which accepts the light position
as an input. We illustrate Stage 1 in Fig. 2 (top-left), with
formulas as follows:

sdf = f(x), c = MLPcolor(x,d, l, feat) (2)

where f(·) is the geometry network that predicts Signed
Distance Function and MLPcolor(·) is the color network. x
is the spatial position, d is the view direction, l is the light
position, and feat is the feature from SDF network. Fol-
lowing [20], the loss for Stage 1 is:

LS1 = LRGB + weikLeik + wcurvLcurv (3)

where LRGB is the loss of the rendered image, Leik repre-
sents the Eikonal loss [12], and Lcurv is the curvature loss.
The terms weik and wcurv are the corresponding weights.
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Figure 2. Method Framework: Stage 1 involves learning the neural field with relighting (top left). Post-processing and generating pseudo
labels (right). In Stage 2, the learning process continues to learn intrinsic decomposition based on the model trained in Stage 1 and the
pseudo labels (bottom left).

3.2. Physics-based Pseudo Label Generation

Our proposed post-processing aims to generate pseudo la-
bels for reflectance and shading in three steps, as illustrated
in Fig. 2 (right). Based on the physics modeling of image
formation, we start with generating pseudo shading by the
normal and light visibility. We then generate pseudo re-
flectance using multiple images and shadings under differ-
ent illumination. Details can be found in the supplementary.
Step A. The normals are derived from the SDF network.
The geometry network also provides depth information
which is used to estimate the intersection points in conjunc-
tion with sphere tracing[5]. Light visibility, which indicates
whether a point is directly illuminated, is obtained by sphere
tracing based on the light position and intersection points.
Step B. The generation of pseudo-shading follows the for-
mula, S∗ = ((N⃗ · L⃗) ·V )γ , where the optimal shading S∗ is
the multiplication of the light visibility V and the dot prod-
uct of the normal N⃗ and the light ray L⃗. (·)γ represents for
gamma correction. This correction is essential because the
human eye’s perception of brightness is not linear. Thus,
we apply it to accommodate the perceptual effect, yielding
to our pseudo shading.
Step C. Our method infers pseudo reflectance from pseudo
shading using R = I/S. For pseudo labels, this calcula-
tion is only applicable in the case of direct illumination.
We utilize various lighting conditions to obtain different
reflectance values; and by employing K-means [28] along
with the confidence related to pseudo shading, we merge to
form the most probable reflectance map. Areas lacking di-
rect illumination are filled using a strategy considering pixel
distance, normals, and RGB colors, resulting in the final
pseudo reflectance.

3.3. Stage 2: Learning Intrinsic Decomposition

As illustrated in Fig. 2 (bottom-left), we jointly learn the re-
lighting and intrinsic decomposition. Expanding the model
from Stage 1, we add two extra MLPs dedicated to gener-
ating reflectance and shading outputs, while the geometry
network is frozen. Note that, while all MLPs receive SDF
feature inputs, the RGB color MLP accepts spatial points,
camera pose, and light positions as input, the reflectance
MLP only receives spatial points, and the shading MLP
takes spatial points and light positions.

After volume rendering, we obtain RGB images, along
with reflectance and shading. Subsequently, the residual is
derived from Eq. (1). During training, the pseudo labels are
used to impose constraints on reflectance and shading.

Lintrinsic = WR · ∥R̂−R∗∥1 +WS · ∥Ŝ − S∗∥1 (4)

where R̂ and Ŝ represent the predicted reflectance and shad-
ing, respectively, and R∗ and S∗ are their corresponding
pseudo labels. WR and WS represent weight maps for re-
flectance and shading, derived during pseudo label gener-
ation. As demonstrated in [37], the diffuse components
dominate the scene, so it is crucial to prevent the training
from converging to undesirable local minima (R = 0, S =
0, Re = I). Therefore, we introduce a regularization term,
Lreg = ∥R̂e∥1, to ensure that the image is primarily recov-
ered through R and S. Finally, the Stage 2 loss is:

LS2 = LRGB + wintrinsicLintrinsic + wregLreg (5)

4. Experiments
We conduct experiments on both the NeRF [23] (synthetic)
and the ReNe [33] (real) datasets. Detailed setup can



Hotdog (Reflectance) Hotdog (Shading) Lego (Reflectance) Lego (Shading)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

PIE-Net[6] 18.38 0.8992 0.1243 17.56 0.8835 0.1202 18.39 0.8603 0.1677 17.46 0.8424 0.1568
Careaga et al. [4] 18.54 0.9094 0.0922 21.08 0.9234 0.0584 17.19 0.8573 0.1298 18.79 0.8565 0.1194

IntrinsicNeRF*[37] 25.62 0.9620 0.0967 - - - 19.00 0.9046 0.1288 - - -
Ours 23.87 0.9478 0.0633 23.16 0.9467 0.0785 21.45 0.9116 0.1013 19.90 0.8919 0.1011

Table 1. Quantitative results on the NeRF [23] dataset.
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Figure 3. Qualitative comparisons on the NeRF [23] (the first two rows) and ReNe [33] datasets (the last two rows).

be found in the supplementary. We compare our method
with traditional learning-based methods (PIE-Net [6] and
Careaga et al. [4]) and the state-of-the-art neural rendering
approach (IntrinsicNeRF [37]).

Tab. 1 displays our method’s quantitative results com-
pared with other methods on the NeRF dataset. Since In-
trinsicNeRF struggles with datasets that have lighting vari-
ations, we use the numbers from the original publication for
comparison. In the Hotdog scene, regarding reflectance, our
PSNR and SSIM scores are the second best, narrowly trail-
ing behind IntrinsicNeRF. However, our method achieves
the best performance in terms of LPIPS and also excels
in shading across all metrics. For the Lego scene, our
approach surpasses others in both reflectance and shading
across all metrics.

Fig. 3 presents the qualitative comparison of our method
against others on both the synthetic NeRF dataset and the
real-world ReNe dataset. On the NeRF dataset, we first
showcase the outcomes of our synthesized novel views and
lighting conditions on the left, demonstrating results closely
aligned with the GT. Then, we display the results of in-
trinsic decomposition compared to other approaches. It is
evident that our results are quite convincing and outper-
form those of others, with almost no lingering cast shad-
ows in the reflectance. The latter part shows results from
the challenging Rene dataset, characterized by real scenes
with backgrounds. Our rendering effects, displayed on the

left, closely approximate the GT. Moreover, our method is
the only one that achieves credible results in intrinsic de-
composition. In terms of reflectance, the object’s texture
edges are sharp, the colors are vibrant, and shadows are ac-
curately eliminated. In contrast, the results from PIE-Net[6]
and Careaga et al. [4] are blurry and fail to remove shad-
ows correctly. The other neural rendering method, Intrin-
sicNeRF [37], also fails to achieve correct decomposition,
primarily attributed to the failure in distinguishing intrinsic
components and also the difficulty in scene reconstruction.

5. Conclusion
We introduce a neural rendering method that learns relight-
ing and intrinsic decomposition from multi-view images
with varying lighting without the intrinsic GT. This ap-
proach supports the creation of new views, relighting, and
decomposition simultaneously, serving as a versatile tool
for editing tasks like reflectance and shading adjustments.
Our tests on both synthetic and real-world datasets validate
our method’s effectiveness. This method, grounded in ba-
sic physical concepts rather than predefined priors, shows
promise for more complex scene analyses. In the future, we
aim to extend our experiments to explore a more compre-
hensive set of scenes.
Acknowledgement: Thanks to Hassan Ahmed Sial for his
assistance in generating the synthetic scenes.
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