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Supplementary Material

In this supplementary material, we present the following:
1. More detailed procedures for generating pseudo labels.
2. Specifications of experimental settings.
3. Additional qualitative results.

1. Pseudo Label Generation
Here, we elaborate on the post-processing steps (Fig. 1) in
the main paper Sec. 3.2. It starts with generating pseudo
shading based on Lambertian reflection principles. Under
the assumption that the light intensity and color remain con-
stant, shading can be approximated by the dot product be-
tween the normal ray and the light ray. The light ray en-
compasses both direct/indirect illumination and necessitates
light visibility to account for occlusion effects.

1.1. Step A: obtain normal and light visibility

The normals are derived from the SDF network. The ge-
ometry network also provides depth information which is
used to estimate the intersection points in conjunction with
sphere tracing[1]. Light visibility, which indicates whether
a point is directly illuminated, is obtained by sphere tracing
based on the light position and intersection points.

1.2. Step B: generate pseudo shading

The generation of pseudo-shading follows the formula,

S′ = ((N⃗ · L⃗) · V )γ (1)

where the optimal shading S′ is the multiplication of the
light visibility V and the dot product of the normal N⃗
and the light ray L⃗. (·)γ represents for gamma correction.
This correction is crucial because the human eye’s percep-
tion of brightness is not linear. Most images we see have
undergone gamma correction to accommodate this percep-
tual effect. Therefore, calculating shading also necessitates
gamma correction, yielding to our defined pseudo shading.

1.3. Step C: generate pseudo reflectance

This step entails inferring the most probable pseudo re-
flectance from the pseudo shading, principally based on the
equation R = I/S. The approach has two main points that
should be noted here.

First, the current pseudo shading only considers direct
light. As seen in previous papers [2, 7, 10], solving for
indirect light is a complex and computationally expensive
process. Our novel approach leverages the trained model to
generate multiple versions of images under different light-
ing conditions, each accompanied by respective pseudo
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Figure 1. Post-processing and generating pseudo labels.

shadings. As direct light strengthens on a pixel, the influ-
ence of indirect light diminishes, making the reflectance de-
rived from higher pseudo shading values more reliable. We
compare the outcomes under multiple lighting conditions
and synthesize the most credible reflectance for each pixel
based on the intensity of pseudo shading.

Second, the residual term includes specularity and other
effects that are not considered in R = I/S. Specular high-
lights, which have high pseudo shading values, do not re-
flect the object color but rather the light source color (e.g.,
white reflections). By analyzing different lighting condi-
tions, where highlights typically vanish except under spe-
cific angles, we can deduce the object color by selecting the
most common reflectance outcomes.

Our implementation employs the K-means algorithm, in-
corporating the weights of pseudo shading. This approach
allows us to achieve a merged reflectance under varied light-
ing conditions, as shown in the intermediate result at the
bottom in Fig. 1. However, some regions within the merged
reflectance may appear vacant due to the absence of direct
illumination in all lighting conditions. So, we address these
areas with a filling strategy. This strategy specifically con-
siders the distance between void and non-void pixels, their
normals, and their colors in the RGB image, thereby achiev-
ing the final pseudo reflectance.

Additionally, we compute weight maps WR and WS for



both pseudo reflectance and pseudo shading based on the
edges of pseudo shading and visibility. Areas with higher
pseudo shading values, or those further from visibility edges
(where visibility calculations may be prone to errors), ex-
hibit greater credibility in their pseudo labels; conversely,
areas closer to visibility edges or with lower pseudo shad-
ing values are deemed less reliable.

2. Experimental Settings
Datasets. To validate our approach, we conduct experi-
ments on both synthetic and real-world datasets.

For the synthetic dataset, models are obtained from
NeRF [4], with lighting configurations borrowed from Zeng
et al. [8]. To facilitate quantitative analysis, GT for re-
flectance, shading, and residuals are rendered in Blender.
Each scene comprises 500 images for training, 100 for val-
idation, and 100 for testing, including intrinsic components
for each image. Importantly, adhering to the configurations
in [8], the settings for lighting and camera poses are man-
aged independently.

The real dataset we use is the ReNe dataset [5], where
lighting and camera poses are grid-sampled. This dataset
features 2000 images across scenes, captured from 50 dif-
ferent viewpoints under 40 lighting conditions. Following
their dataset split, we use 1628 images (44 camera poses ×
37 light positions) for training.

Additionally, given that the settings of lights and cam-
eras are dependent on the former one and grid-sampled in
the latter, our proposed method is designed to accommodate
both configurations.
Metrics. To evaluate the comparison between predicted im-
ages and ground truth (GT), we employ the following met-
rics: Peak Signal-to-Noise Ratio (PSNR), Structural Sim-
ilarity Index (SSIM) [6], and Learned Perceptual Image
Patch Similarity (LPIPS) [9].
Implementation details. Our model’s hyperparameters in-
clude a batch size of 2048 and each stage was trained for
500k iterations. We implemented the model in PyTorch
and used the AdamW [3] optimizer with a learning rate of
1e−3 for optimization. The experiments can be conducted
on a single Nvidia RTX 3090 or A40 GPU. The weights of
losses, weik, wcurv, wintrinsic, wreg are set to 0.1, 5e−4, 1.0,
and 1.0, respectively.

3. Additional qualitative results
We present additional results in this section. Fig. 2 dis-
plays additional examples comparing our method with oth-
ers. Fig. 3 - Fig. 8 shows more qualitative results of our
method on the ReNe dataset. Furthermore, Fig. 9 - Fig. 11
demonstrate additional qualitative results of our method on
real scenes from [8].



Figure 2. Compare with other methods on the ReNe dataset.
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Figure 3. Qualitative results on the ReNe dataset (Cube).
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Figure 4. Qualitative results on the ReNe dataset (Garden).
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Figure 5. Qualitative results on the ReNe dataset (Cheetah).
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Figure 6. Qualitative results on the ReNe dataset (Lego).
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Figure 7. Qualitative results on the ReNe dataset (Dinosaurs).
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Figure 8. Qualitative results on the ReNe dataset (Apple).
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Figure 9. Qualitative results on the real scene (Pikachu).
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Figure 10. Qualitative results on the real scene (Pixiu).
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Figure 11. Qualitative results on the real scene (FurScene).
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