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Figure 1. Overview: a) We present NeRF-MAE, the first large-scale fully self-supervised pretraining for Neural Radiance Fields (NeRFs).
Our approach utilizes a 3D Swin Transformer-based encoder and a voxel decoder to learn a powerful representation in (a) masked self-
supervised learning objective directly in 3D using only posed RGB images as input. (b) Our representation, when finetuned on a small
subset of data, improves many 3D downstream tasks such as 3D object detection in NeRFs, voxel-grid super-resolution, and voxel-labelling.

Abstract
Given the capabilities of neural fields in densely repre-

senting 3D scenes from 2D images, we ask the question:
Can we scale their self-supervised pretraining, specifically
using masked autoencoders, to generate effective 3D repre-
sentations from posed RGB images. Owing to the astound-
ing success of extending transformers to novel data modal-
ities, we employ standard 3D Vision Transformers to suit
the unique formulation of NeRFs. We leverage NeRF’s vol-
umetric grid as a dense input to the transformer, contrast-
ing it with pointclouds where the information density can
be uneven, and the representation is irregular. Our goal
is made possible by masking random patches from NeRF’s
radiance and density grid and employing 3D Swin Trans-
former to reconstruct masked patches. In doing so, the
model learns the semantic and spatial structure of complete
scenes. Our novel self-supervised pretraining for NeRFs
scales remarkably well and improves performance on vari-
ous challenging 3D tasks; thus significantly outperforming
self-supervised pretraining and scene understanding base-
lines on Front3D and ScanNet datasets with a performance
improvement of over 20% AP50 and 8% AP25 for 3D object
detection. Project Page: nerf-mae.github.io

1. Introduction

Neural fields’[1, 36] emergent properties [70] have made
them suitable for tasks beyond showcasing higher rendering
quality. Prior approaches have successfully applied neural
fields to extract accurate scene geometry [40, 63, 76],
estimate camera poses [66, 78], infer accurate seman-
tics [2, 77], and learn 3D correspondences [57, 79].
NeRFs have also emerged as a promising 3D data storage
medium [24], and have proven to outperform traditional su-
pervised approaches [19, 24] for challenging 3D tasks like
object detection [19, 71] and instance segmentation [32].

Because of NeRF’s inherent ability to densely represent
a 3D scene from 2D images, this paper explores scaling up
their self-supervised pre-training (Fig. 3) through the use of
masked autoencoders. The notion of masked auto-encoding
is equally suited to NeRF’s radiance and density grid as
to images (Fig. 2). As opposed to other 3D representa-
tions such as meshes, point clouds, or lidar data which only
model surface-level information, are highly irregular data
structures and the information density can be extremely un-
even [42], NeRF’s radiance and density grid is similar in
principle to 2D images for masked auto-encoding. This is

https://nerf-mae.github.io/
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Figure 2. NeRF-MAE comparison: We show detailed comparison to point-based pretraining approaches in § C.5. We note their limitation
as they model surface-level sparse points, where our approach is similar to images in terms of high-information density and regularity of
structure; hence making NeRF-MAE a direct extension of image MAE to 3D. We leverage NeRF’s dense volumetric information along
rays and introduce an opacity-aware reconstruction loss, enabling us to achieve superior representation learning.

the case because it provides high information density, and
a regular grid ensuring unbiased sampling. Owing to these
nice properties, the radiance and density grid obtained from
NeRFs have shown to achieve state-of-the-art scene under-
standing such as segmentation and detection [19, 32].

Driven by this analysis, we propose NeRF-MAE (NeRF
Masked Auto-Encoders) for self-supervised learning di-
rectly within Neural Radiance Fields. In comparison to
prior generalizable NeRF or 3D representation learning
methods (Table S2), NeRF-MAE offers the following ad-
vantages: 1) The masked self-supervised learning objective
is directly enforced on dense regular grids with high-density
information, thus enabling the use of standard Transformer
architecture without requiring careful adaptation or adopt-
ing extra non-Transformers Blocks (such as DGCNN used
in Point-BERT [81]. 2) By disentangling representation
learning and NeRF training, our model can effectively uti-
lize a large amount of data from diverse sources. This is in
contrast to most previous generalizable NeRF methods that
only train on a single type of data source for priors.

For training our model, we curate a large-scale dataset
for NeRF pre-training, encompassing 4 diverse sources in
synthetic and real domains. Our dataset comprises multi-
view posed images, corresponding NeRFs, and sampled
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Figure 3. Quantitative results showing scaling laws and NeRF
quality ablation for NeRF-MAE pretraining and transfer learning.

radiance and density grids from Front3D, ScanNet, HM3D,
and Hypersim, accumulating over 1.6M images and 3500+
scenes (Table. S2 and Figure S3). To summarize, we make
the following contributions:
• To our knowledge, we introduce the first fully self-

supervised transformer-based 3D pretraining utilizing
Neural Radiance Field’s radiance and density grid as an
input modality coupled with an opacity-aware masked
reconstruction objective.

• A large scale pre-training of Neural Radiance Fields
on 4 different datasets, over 1.6M images, and 3500+ in-
door scenes, using a single model.

• Our proposed approach significantly outperforms self-
supervised 3D pretraining as well as NeRF scene un-
derstanding baselines on multiple downstream 3D tasks,
showing over 20% AP50 and 12% mAcc on 3D ob-
ject detection and semantic voxel labeling respectively on
Front3D dataset while requiring less than half the data
requirement of the state-of-the-art baseline to achieve the
same performance.

2. NeRF-MAE: Self-Supervised Pretraining
for Neural Radiance Fields

NeRF-MAE introduces a self-supervised framework aimed
at enhancing 3D representation learning in the context of
Neural Radiance Fields [36] (NeRFs). Our approach allows
learning robust 3D representations from posed RGB im-
ages, leading to substantial improvements in various down-
stream 3D applications, as we show in Sec. 3. As shown
in Figures 1 and S4, such a goal is made possible by two
major components: (i) An explicit 4D radiance and density
grid extraction module in the canonical world frame using a
camera-trajectory aware sampling from a fully-trained im-
plicit NeRF model (described in Sec. B.2) and (ii) A masked
self-supervised pretraining module, operating directly on
the explicit NeRF’s 4D radiance and density grid, to train a



standard 3D SwinTransformer [33, 75] encoder and a voxel
decoder using an opacity-aware masked reconstruction ob-
jective in 3D (discussed in Sec. 2.1). Our NeRF pretraining
dataset is described in Sec. B.3 and key preliminaries to un-
derstand our pipeline are detailed in Sec. B.1.

2.1. Masked Pretraining NeRFs

NeRF-MAE comprises a standard Swin Transformer [33]
encoder and transposed convolution decoders connected
with skip connections from the encoded output at multiple
feature resolutions of the transformer. Our architecture is
summarized in Figure S2. The U-Net architecture aims to
reconstruct masked 3D radiance and opacity patches. In
doing so, the network learns to understand the semantic and
spatial structure of 3D scenes from dense 3D radiance and
density grid (obtained in Section B.2). Our U-Net style ar-
chitecture for NeRF-pretraining is described below.
3D Transformer Encoder: The goal of the encoder is
to encode the input 3D radiance and density grid (G) into
meaningful features at multiple resolutions which can be
decoded and used for downstream tasks (Section C.3). We
employ the 3D version [19, 75] of the standard Swin Trans-
former [33] which is obtained by replacing all the 2D op-
erations of the SwinTransfomer with their 3D equivalent,
as noted by [19, 75]; for example 3D convolutions and 3D
patch merging. We build our 3D auto-encoder architecture
based on standard Transformers since NeRF’s radiance and
density grid is similar to images in terms of information
density and which can serve as a unified architecture for
various 3D scene understanding tasks operating directly on
NeRFs. Further details are presented in Sec. B.4.
Reconstruction with Lightweight Decoders: We utilize
the feature pyramid F = [fi...fn] obtained after con-
catenating the resulting output of each SwinTransformer
3D stage to obtain the reconstructed radiance and density
grid (R), where i = 0 and n = 3. The reconstructed grid is
obtained by attaching lightweight transposed 3D convolu-
tion decoders (Di) to the feature outputs with a kernel size
of 3 and adding a residual connection from the previous de-
coder, where di = Conv(di−1 + D(fi)) and D0 = f3.
The output of the final decoder block is fed into the resid-
ual block with 3 × 3 × 3 convolutional and a sigmoid ac-
tivation function to predict a 4-channel reconstructed vol-
ume R ∈ RH×W×D×4. We use the same feature pyra-
mid F to output 3D object bounding boxes, voxel seman-
tic labels, and super-resolution voxels with task-specific de-
coders, as described in Section C.3.
Masked Radiance and Density Grid Pretraining Objec-
tive: The goal of masked voxel-grid pretraining as applied
to Neural Radiance Field (NeRF) is to encode semantic and
spatial regions of interest into the network. We use mask
volume region reconstruction, similar to [8] for language
and [15] for images. We enforce a faithful and accurate

reconstruction of masked patches with a custom loss func-
tion suited to NeRF’s unique formulation. Specifically, we
employ a combination of opacity and photometric radiance
reconstruction loss, both enforced at the volumetric level,
where loss Lrecon = Lrad + Lα is defined as:

Lrad =
1

K

N∑
i=1

(ŷradi−yradi)
2 Lα =

1

M

M∑
j=1

(ŷαj
−yαj

)2

where K is the number of voxels in the mask corresponding
to patches where α > xi−xi+1. We use a small preset dis-
tance, xi − xi+1 = 0.01. ŷradi is the predicted radiance at
voxel i and yradi is the target radiance at voxel i. M denotes
the number of voxels in the mask corresponding to removed
3D patches, ŷαj

is the predicted opacity at voxel, j and yαj

is the target opacity at voxel j.

3. Experiments and Results
In this section, we aim to answer the following questions.
1) How well does our method compare with 3D pretraining
baselines? 2) Does NeRF-MAE improve downstream 3D
scene understanding tasks? and 3) How well does NeRF-
MAE scale? We also provide an ablation analysis of which
components most impact the performance.
Baselines: We compare 7 model variants across 3 different
tasks to show the effectiveness of our method. 1) NeRF-
RPN [19]: A state-of-the-art approach that predicts 3D
boxes directly in NeRFs using 3D FPN [29]. 2) Point-
MAE [42]: Extends 2D MAE [15] to 3D pointclouds and
improves object classification and segmentation. 3) Point-
M2AE [85]: Extends Point-MAE to add multiscale features
for irregular point cloud representation learning. 4) Depth-
Contrast [86]: Uses depth to learn 3D representations in a
contrastive manner by comparing transformations of a 3D
point cloud. 5) Contrastive Scene Context [18]: Lever-
ages point correspondences along with spatial contexts to
learn 3D scene level representation. 6) ImVoxelNet [54]: A
strong multi-view 3D detection baseline. 7) NeRF-MAE:
Our 3D representation learning approach utilizing posed 2D
images as input and operates directly on scene’s volumetric
radiance and density grids obtained through NeRFs.
Metrics: We report 3D PSNR and 3D MSE to evaluate grid
reconstruction quality. We report Average Precision (AP)
along with Recall at thresholds 25 and 50 to measure 3D
OBB prediction success. We report mean intersection-over-
union (mIOU), mean accuracy (mAcc), and total accu-
racy (Acc) for the semantic voxel labeling task.

3.1. Comparisons with strong baselines for im-
proved downstream performance

3D Object Detection Downstream Task: The results of
our proposed method are summarized in Tables 1 and S4.
We consistently outperform the state-of-the-art baseline
methods on 3D object detection in NeRFs on both Front3D
and ScanNet scenes. Among our variants, our method
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Figure 4. Qualitative NeRF-MAE Reconstructions:(§ D) Left: For each triplet, we show ground truth (left), masked radiance and
density grid (middle) and our NeRF-MAE reconstruction overlayed with unmasked GT grid (right). The masking ratio is 75%, leaving
only 250 patches out of 1000 patches. Right: shows different masking strategies along with the reconstructed output.

Front3D [12] 3D OBB ScanNet [7] 3D OBB

Approach Aug. Recall@25↑ Recall@50↑ AP@25↑ AP@50↑ Recall@25↑ Recall@50↑ AP@25↑ AP@50↑
NeRF-RPN [19] - 0.961 0.622 0.780 0.415 0.891 0.323 0.491 0.140
ImVoxelNet [54] - 0.883 0.715 0.861 0.664 0.517 0.202 0.373 0.098

NeRF-MAE (F3D) ✗ 0.962 0.675 0.780 0.543 0.897 0.361 0.510 0.145
NeRF-MAE (F3D) ✓ 0.963 0.743 0.830 0.591 0.905 0.391 0.543 0.155

NeRF-MAE (Ours) ✓ 0.972 0.745 0.853 0.630 0.920 0.395 0.571 0.170

Table 1. Quantitative comparisons with strong baselines on downstream 3D OBB prediction: (§ C.3) showing our pretraining im-
proves downstream performance on never-seen during pretraining cross-dataset (ScanNet) and in-domain hold-out data (Front3D). (Ours)
indicate we use F3D [12], HM3D [48] and HS [50] for pretraining. Aug. indicates augmentations done only during pretraining.

pre-trained on multiple data sources (Table 1, row 5) and
with augmentations enabled during pretraining performs the
best. Specifically, NeRF-MAE shows superior performance
on the unseen test-set by achieving an AP50 of 63% and
a Recall50 of 74.3%, hence demonstrating an absolute im-
provement of 21.5% in AP50 and 12.1% in Recall50 on the
Front-3D dataset. Our method also achieves superior per-
formance on ScanNet which is never seen during pretrain-
ing. We achieved an AP50 of 17% and a Recall50 of 39.5%,
hence demonstrating an absolute performance improvement
of 3% AP50 and 7.2% on Recall50 over the best-performing
baseline. We further describe additional experimental de-
tails in supplementary. Specifically, we show that our pre-
training improves performance on a variety of downstream
tasks in Sec. C.3 and C.4. We discuss scaling performance
and ablations in Sec. C.6 and show comparisons to other 3D
pretraining baselines in Sec. C.5. Finally, we show qualita-

tive reconstruction and comparison results in Sec. D.

4. Conclusion
Neural Fields have shown emergent properties going be-
yond reconstruction. In this work, we primarily study scal-
ing NeRFs for their self-supervised pretraining, through the
use of masked auto-encoders. In essence, we use a sin-
gle Transformer model to learn useful 3D representations
from NeRF which we show to be highly effective for 3D
transfer learning. To pre-train our representation, we cu-
rate a large-scale dataset totaling 1.6M+ images and 3,500+
scenes from 4 different sources. Our approach, NeRF-MAE
significantly outperforms self-supervised 3D pretraining as
well as NeRF scene understanding baselines on a variety
of downstream tasks. As it requires readily available and
cheaper to obtain posed-RGB data and with a strong empir-
ical quantitative performance over baselines, we hope this
avenue is a potential future direction of 3D pretraining.
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wards language modeling with state space models, 2023. 11

[12] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming
Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia, Bin-
qiang Zhao, et al. 3d-front: 3d furnished rooms with layouts
and semantics. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pages 10933–10942,
2021. 4, 1, 3, 7, 8, 10, 11

[13] Ayaan Haque, Matthew Tancik, Alexei Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-
ing 3d scenes with instructions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2023. 1

[14] Chenhang He, Ruihuang Li, Shuai Li, and Lei Zhang. Voxel
set transformer: A set-to-set approach to 3d object detection
from point clouds. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2022. 1

[15] K He, X Chen, S Xie, Y Li, P Dollár, and R Girshick.
Masked autoencoders are scalable vision learners. arxiv
preprint arxiv: 211106377, 2021. 3, 1, 2, 4, 11

[16] Georg Hess, Johan Jaxing, Elias Svensson, David Hagerman,
Christoffer Petersson, and Lennart Svensson. Masked au-
toencoders for self-supervised learning on automotive point
clouds. arXiv preprint arXiv:2207.00531, 2022. 1, 2

[17] Yining Hong, Chunru Lin, Yilun Du, Zhenfang Chen,
Joshua B Tenenbaum, and Chuang Gan. 3d concept learn-
ing and reasoning from multi-view images. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9202–9212, 2023. 3

[18] Ji Hou, Benjamin Graham, Matthias Nießner, and Saining
Xie. Exploring data-efficient 3d scene understanding with
contrastive scene contexts. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15587–15597, 2021. 3, 4, 5, 9

[19] Benran Hu, Junkai Huang, Yichen Liu, Yu-Wing Tai, and
Chi-Keung Tang. Nerf-rpn: A general framework for object
detection in nerfs. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
23528–23538, 2023. 1, 2, 3, 4, 5, 6, 7, 9, 10

[20] Di Huang, Sida Peng, Tong He, Honghui Yang, Xiaowei
Zhou, and Wanli Ouyang. Ponder: Point cloud pre-training
via neural rendering. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 16089–
16098, 2023. 11

[21] Muhammad Zubair Irshad, Thomas Kollar, Michael Laskey,
Kevin Stone, and Zsolt Kira. Centersnap: Single-shot
multi-object 3d shape reconstruction and categorical 6d pose
and size estimation. In IEEE International Conference on
Robotics and Automation (ICRA), 2022. 1

[22] Muhammad Zubair Irshad, Sergey Zakharov, Rares Ambrus,
Thomas Kollar, Zsolt Kira, and Adrien Gaidon. Shapo: Im-
plicit representations for multi object shape appearance and
pose optimization. In European Conference on Computer
Vision (ECCV), 2022. 1

[23] Muhammad Zubair Irshad, Sergey Zakharov, Katherine Liu,
Vitor Guizilini, Thomas Kollar, Adrien Gaidon, Zsolt Kira,
and Rares Ambrus. Neo 360: Neural fields for sparse view
synthesis of outdoor scenes. In Interntaional Conference on
Computer Vision (ICCV), 2023. 1

[24] Yoonwoo Jeong, Seungjoo Shin, Junha Lee, Chris Choy, An-
ima Anandkumar, Minsu Cho, and Jaesik Park. Perfception:
Perception using radiance fields. Advances in Neural Infor-
mation Processing Systems, 35:26105–26121, 2022. 1, 2



[25] Li Jiang, Zetong Yang, Shaoshuai Shi, Vladislav Golyanik,
Dengxin Dai, and Bernt Schiele. Self-supervised pre-
training with masked shape prediction for 3d scene under-
standing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1168–
1178, 2023. 1

[26] Justin* Kerr, Chung Min* Kim, Ken Goldberg, Angjoo
Kanazawa, and Matthew Tancik. Lerf: Language embedded
radiance fields. In International Conference on Computer
Vision (ICCV), 2023. 1

[27] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Car-
oline Pantofaru, Leonidas J Guibas, Andrea Tagliasacchi,
Frank Dellaert, and Thomas Funkhouser. Panoptic neural
fields: A semantic object-aware neural scene representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12871–12881, 2022.
1

[28] Yaqian Liang, Shanshan Zhao, Baosheng Yu, Jing Zhang,
and Fazhi He. Meshmae: Masked autoencoders for 3d mesh
data analysis. In European Conference on Computer Vision,
pages 37–54. Springer, 2022. 1, 2

[29] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 3, 4

[30] Haotian Liu, Mu Cai, and Yong Jae Lee. Masked discrim-
ination for self-supervised learning on point clouds. Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2022. 1

[31] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020. 1

[32] Yichen Liu, Benran Hu, Junkai Huang, Yu-Wing Tai, and
Chi-Keung Tang. Instance neural radiance field. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 787–796, 2023. 1, 2

[33] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 3, 4

[34] Mayank Lunayach, Sergey Zakharov, Dian Chen, Rares Am-
brus, Zsolt Kira, and Muhammad Zubair Irshad. Fsd: Fast
self-supervised single rgb-d to categorical 3d objects. 2023.
1

[35] Manolis Savva*, Abhishek Kadian*, Oleksandr
Maksymets*, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi
Parikh, and Dhruv Batra. Habitat: A Platform for Embodied
AI Research. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019. 3

[36] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2

[37] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-

tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1–15, 2022. 1, 2, 7

[38] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2021. 1

[39] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
CVPR, 2020. 1

[40] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space. In Proceedings IEEE
International Conf. on Computer Vision (ICCV), 2019. 1

[41] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural scene graphs for dynamic scenes. In
CVPR, 2021. 1

[42] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu,
Yonghong Tian, and Li Yuan. Masked autoencoders for point
cloud self-supervised learning. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part II, pages 604–621. Springer,
2022. 1, 3, 2, 4, 5, 9

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library, 2019.
6

[44] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In European Conference on Computer Vision
(ECCV), 2020. 11

[45] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural Radiance Fields
for Dynamic Scenes. In CVPR, 2021. 1

[46] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017. 1

[47] Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-
formers see like convolutional neural networks? Advances
in Neural Information Processing Systems, 34:12116–12128,
2021. 2

[48] Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wi-
jmans, Oleksandr Maksymets, Alexander Clegg, John M
Turner, Eric Undersander, Wojciech Galuba, Andrew West-
bury, Angel X Chang, Manolis Savva, Yili Zhao, and Dhruv
Batra. Habitat-matterport 3d dataset (HM3d): 1000 large-
scale 3d environments for embodied AI. In Thirty-fifth Con-
ference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2021. 4, 1, 3, 7, 8, 9, 10, 11

[49] Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoit
Guillard, Timur Bagautdinov, Pierre Baque, and Pascal Fua.
Meshsdf: Differentiable iso-surface extraction. In Advances



in Neural Information Processing Systems, pages 22468–
22478. Curran Associates, Inc., 2020. 1

[50] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit
Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb,
and Joshua M Susskind. Hypersim: A photorealistic syn-
thetic dataset for holistic indoor scene understanding. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10912–10922, 2021. 4, 1, 3, 10, 11

[51] Barbara Roessle, Jonathan T Barron, Ben Mildenhall,
Pratul P Srinivasan, and Matthias Nießner. Dense depth pri-
ors for neural radiance fields from sparse input views. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12892–12901, 2022. 1,
3, 7, 10

[52] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 3

[53] Danila Rukhovich, Anna Vorontsova, and Anton Konushin.
Fcaf3d: Fully convolutional anchor-free 3d object detection.
In European Conference on Computer Vision, pages 477–
493. Springer, 2022. 2

[54] Danila Rukhovich, Anna Vorontsova, and Anton Konushin.
Imvoxelnet: Image to voxels projection for monocular and
multi-view general-purpose 3d object detection. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2397–2406, 2022. 3, 4

[55] William Shen, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack
Kaelbling, and Phillip Isola. Distilled feature fields enable
few-shot language-guided manipulation. In 7th Annual Con-
ference on Robot Learning, 2023. 1

[56] Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulò, Nor-
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NeRF-MAE: Masked AutoEncoders for Self-Supervised
3D Representation Learning for Neural Radiance Fields

Supplementary Material
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Figure S1. Data preparation for pretraining: showing multi-view images, trained NeRF and extracted radiance and density grid for
Instant-NGP [37] trained NeRFs for Front3D [12], HyperSim [50] and Habitat-Matterport3D [48]. The right column shows multi-view
images, rendered RGB/depth images, and extracted radiance and density grid for ScanNet [7] dataset, which is trained using dense depth
prior NeRF [51]. Note that we do not pre-train our representation on ScanNet, rather use this dataset for our cross-dataset transfer
experiment for the downstream 3D OBB prediction task.

This supplementary material is divided into 9 sections.
First we discuss related works in Section A, Method in Sec-
tion B, followed by experiments in Section C and qualitative
results in Section D. We provide details regarding network
architecture and number of parameters in Section E. Next,
we provide an overview of compute resources required to
pretrain our representation in Section F. This is followed by
a discussion related to implementation details in Section G
and additional experimental analysis in Section H. Lastly,
we discuss our pretraining datasets in Section I.

A. Related Works
3D Representation Learning: Supervised learning for
3D data [14, 21, 22, 46, 73] has made promising progress.
Although powerful, these techniques require expensive 3D
labels. Alternatively, self-supervised learning [25, 30, 34,
67, 72, 86] and masked autoencoders [15] have emerged as
a way to learn strong representations for computer vision
tasks without needing labeled data. Follow-up works ex-

tended this idea to the 3D domain by directly reconstructing
masked 3D coordinates with point clouds [4, 42, 81, 85],
meshes [28] or voxels as 3D representations [16]. While
successful, they require careful adaptation of existing
architectures due to irregularity in data structures and
uneven information density whereas our approach uses
standard Transformer modules, while also requiring readily
available and cheaper to obtain posed 2D data compared
with lidar scans or accurate mesh reconstructions.

NeRF as 3D Scene Representation: Advances in differen-
tiable neural rendering [5, 39, 49, 59, 63, 84] have allowed
for learning 3D representations using only image supervi-
sion. Neural Radiance Fields (NeRFs) [36] is one example
that excels in novel-view synthesis. Extensions of NeRF
study generalizable scene modelling [3, 23, 61, 69, 80], se-
mantic and open-world 3D understanding [10, 26, 27, 56,
87], generative modelling [13, 38, 62], robotics [55, 58, 78,
83, 89], dynamic scenes [31, 41, 45, 82] and compositional
representations [41, 74]. Recently, NeRFs have shown com-



Method PixelNeRF [80] NeRFRPN [19] PerFception [24] Voxel-MAE [16] PiMAE [4] SUNetR [60] NeRF-MAE

# Scenes 40 515 1500 850 - 5000 3637
# Frames 4k 80k 2.5M - 10k - 1.65M

S.S. Pretraining ✗ ✗ ✗ ✓ ✓ ✓ ✓
Input Data RGB* RGB* RGB* Pointcloud RGB-D CT Scan RGB*

3D Representation NeRF NeRF NeRF Voxel Pointclouds Voxel NeRF
Data domain(s) Single (1) Single (1) Single (1) Single (1) Single (1) Multiple (5) Multiple (4)

Table S2. Specifications of supervised or self-supervised approaches to 3D representation or generalizable learning, highlighting our novel
self-supervised (S.S) 3D pretraining strategy for NeRFs which requires posed RGB images as input. * denotes posed RGB images.

petitive performance for supervised 3D tasks such detec-
tion [19, 71] and segmentation [32] when compared with
methods that require depth as input [53]. However, lit-
tle attention has been given to representation learning for
NeRFs. Our approach fills this gap by focusing on self-
supervised pretraining for neural radiance fields, utilizing
NeRF’s dense radiance and density grid for pretraining to
improve performance on various downstream 3D tasks.
Vision Transformers: Computer vision has undergone a
transformative shift with the emergence of vision transform-
ers [9, 47]. Their ability to model global and local contexts
has sparked interest in exploring methods to pre-train
these backbones. MoCoV3 [6] and MAE [15] delved into
different aspects of self-supervised Vision Transformers.
In particular, MAE [15] achieved state-of-the-art results
by drawing inspiration from BERT [8], which involves
randomly masking words in sentences, and using masked
image reconstruction. Subsequent research extended this
concept to the 3D domain [16, 28, 42, 60], leading to
impressive results in downstream 3D vision tasks.

B. Method
B.1. Preliminaries - NeRF and InstantNGP:

Given posed 2D images, NeRF represents a 3D scene im-
plicitly. It uses a neural network, f(x, θ), to predict color
(ci) and density (σi) at any given 3D query position (xi) and
viewing direction (θi) as input. The 4D color and density
outputs are used in an alpha compositing process to gen-
erate rendered images through volume rendering with near
and far bounds tn and tf , as highlighted in the equations
below:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt (1)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
and r denotes the

camera ray. Although our work is suited to any input NeRF
formulation, we choose Instant-NGP [37] to model the ra-
diance and density of a 3D scene using a small Multi-layer
perceptron (MLP) with a sparse occupancy grid. A fast ray
marching routine is utilized by ray compacting based on
occupancy grid values. We also utilize a multi-resolution
hash encoding from [37] for faster NeRF training. An
example trained scene is shown in Figure S4 (b).

B.2. Neural Radiance Field Grid Representation:

Radiance and Density Grid Sampling from Instant-NGP
NeRF: NeRF-MAE reconstructs input masked NeRF vol-
umes to pretrain standard 3D Swin Transformers. The first
step in this process is to uniformly sample a radiance and
density feature volume from a trained NeRF model (Figure
S4), in our case, Instant-NGP NeRF [37]. Querying a pre-
trained NeRF for radiance and density information on a reg-
ular grid allows 1. extracting an explicit representation that
compactly captures the original 3D scene, 2. is invariant to
the NeRF formulation used, and 3. opens up the possibility
of utilizing existing deep-learning architectures developed
for 3D tasks such as 3D RPN (Section C.3) for detection
and segmentation [19, 32]. To sample radiance and den-
sity information, we query each trained NeRF model from
all the training cameras in the traceable scene volume and
average the resulting output.
Formally, Let G ∈ RH×W×D×4 be a 4D grid representing
the scene volume (Figure S4 c), where, H,W,D denote the
height, width, and depth dimension. For a grid point (i, j, k)
on a spatial 3D grid, the 4 channel values for each grid point
(i, j, k) are the mean of the values obtained by this function
f(x, θ) for all viewing directions. Mathematically, we can
write this as:

(ri,j,k, gi,j,k, bi,j,k, αi,j,k) =
1

N

N∑
θ=1

f(xi,j,k, θ) (2)

where N is the number of training images, α can be ob-
tained from volume density (σx) as α = 1− exp(−σi∥xi−
xi+1∥) and xi − xi+1 = 0.01, is a small preset dis-
tance [19]. Similar to [19, 32], we determine the trace-
able volume of the scene by enlarging the axis-aligned
bounding box encapsulating all cameras and objects (where
available) in the scene. Compared to point-based pretrain-
ing approaches, [42, 85] which carry information only at a
surface-level and the distribution of information is relatively
uneven (see Fig. 2), our approach makes use of dense infor-
mation along all camera rays indicating that NeRF grids are
similar to images in terms of information density; hence we
show empirically that we are able to learn significantly bet-
ter representations compared to other self-supervised pre-
training baselines (see. Section C.5).
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Figure S2. NeRF-MAE Architecture: Our method utilizes a U-Net [52] style architecture employing Swin Transformers [33] as the
encoder to encode the RGB/density grid into meaningful multi-resolution low-level features, and transposed convolution layers at each
stage with skip connections using residual blocks from the features of the encoder.

B.3. NeRF Pretraining Datasets

A key component of our approach is employing a sin-
gle model to pre-train strong 3D representations in a self-
supervised manner from NeRFs on a large number of scenes
with varying complexity and realism. As shown in Fig-
ure S3, we train our representation in a fully self-supervised
manner on the following dataset mix:
Front3D [12]: A large-scale dataset containing 18k rooms
with 3D objects. We extend [19] to render 5x as many
scenes, totaling 1.2k scenes comprising 425k images for our
pretraining. The rendering time of this dataset is 6 days on
8 A100 GPUs.
HM3D [48]: A large-scale realistic dataset of 1000 scans.
We render approximately 1.1k scenes comprising 1.2M im-
ages using Habitat [35]. Following [17], we collect the
data by randomly selecting 80 navigable points within each
room’s bounding box. At each navigable point, we rotate
the agent 360◦ to render 12 frames with a [10◦,−10◦] ele-
vation change. The rendering time of this dataset is around
2 days on 8 A100 GPUs.
Hypersim [50]: A synthetic dataset with real-world real-
ism and 3D annotations. We use the rendered images (250
scenes, 25k images) from [50] for our NeRF pretraining as
they provide high-quality poses for reconstruction.
ScanNet [7]: A real-world dataset for indoor scenes. We
keep this dataset for our cross-dataset transfer experiments
and do not use this for pretraining. 90 out of the 1500 scenes
are chosen, similar to [19] and we use the feature grid ex-
tracted from dense-depth-prior NeRF [51] for our down-
stream task experiments which further confirms the gener-
alizability of our approach to various NeRF variants.

For all datasets, extensive cleaning of the bounding box
as well as semantic annotations was performed based
on manual filtering, class filtering, and size filtering (see
supplementary). This cleaning was only carried out for
downstream task fine-tuning and not carried out for our
pretraining. We will release the complete dataset along
with code, upon acceptance, for reproducibility.

B.4. 3D Transformer Encoder

Considering the input to the standard 3D SwinTrans-
former [19, 75] to be the radiance and density grid (G ∈
RH×W×D×4), we first mask out random patches of size (P
= p×p×p), where p = 4, with a masking ratio of m = 0.75
to get masked radiance and density grid M. Subsequently,
we use P to divide the masked radiance and density grid
into patches to create a series of 3D tokens of size H

p ×W
p ×

D
p ×E using a 3D convolutional operation, where we merge

patch partitioning and linear embedding of each patch into
one single step. Next, we add 3D positional embedding to
each patch, without a classification token, to assign each
token to a unique representation. These tokens are further
processed by four different stages of shifted window atten-
tion and patch merging, where the input patches are subdi-
vided into non-overlapping windows of size W ×W ×W ,
where W = 4, with local multi-head self-attention (W-
MSA-3D) and shifted multi-head self-attention (SW-MSA-
3D) performed for initial and subsequent layers in each
block respectively (see Fig. S2). Each Swin Transformer 3D
block also contains a 2-layer MLP with GeLU activation
as non-linearity in between following shifted window-based
self-attention modules. A linear norm (LN ) layer follows
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Figure S3. NeRF-MAE dataset mix: a. Multi-view dataset with
camera distribution, b. diverse scenes from 4 different sources
i.e. Front3D [12], Hypersim [50], Habitat-Matterport3D [48] and
ScanNet [7] totaling over 3500 scenes and 1.6M images used for
pretraining NeRF-MAE using a single model.

every W-MSA-3D and MLP with residual connection ap-
plied after each module. Due to the quadratic complexity
in computing global self-attention for standard vision trans-
formers, we employ shifted window attention [33] by dis-
placing the windows by [W2 , W

2 , W
2 ] volume every layer. A

patch merging layer follows every transform block, except
for the last one, which merges four volumetric patches, so
a reduction by a factor of 2 in height, width, and depth
of the input volume occurs. A Linear Norm (LN ) and
an MLP layer follow patch merging to increase the fea-
ture dimension by a factor of 2. We use an embedding di-
mension E = 96, Swin block depths of d = [2, 2, 18, 2]
and number of heads [3, 6, 12, 24] for each W-MSA-3D
and SW-MSA-3D blocks.

C. Experiments

C.1. Baselines:

We compare 7 model variants across 3 different tasks to
show the effectiveness of our method. 1) NeRF-RPN [19]:
A state-of-the-art approach that predicts 3D boxes directly
in NeRFs using 3D FPN [29]. 2) Point-MAE [42]: Ex-
tends 2D MAE [15] to 3D pointclouds and improves ob-
ject classification and segmentation. 3) Point-M2AE [85]:
Extends Point-MAE to add multiscale features for irreg-
ular point cloud representation learning. 4) DepthCon-
trast [86]: Uses depth to learn 3D representations in a
contrastive manner by comparing transformations of a 3D
point cloud. 5) Contrastive Scene Context [18]: Lever-
ages point correspondences along with spatial contexts to
learn 3D scene level representation. 6) ImVoxelNet [54]: A
strong multi-view 3D detection baseline. 7) NeRF-MAE:
Our 3D representation learning approach utilizing posed 2D
images as input and operates directly on scene’s volumetric
radiance and density grids obtained through NeRFs.

a) Multi-view data

c) Extracted RGB/Density Grid

b) Trained NeRF

Transformer 

Encoder

Voxel 

Decoder

d) NeRF-MAE Pretraining

Figure S4. NeRF-MAE data processing flow for pretraining:
showing a. multi-view training data, b. trained NeRF representa-
tion, c. extracted RGB/Density grid from the trained NeRF and d.
masked pretraining of the voxel-grid neural radiance field.

C.2. Datasets:

We pre-train our 3D representation in a self-supervised
manner on Front3D [12], HM3D [48] and Hypersim [50].
For cross-dataset transfer 3D object detection, we test on
hold-out Scannet [7] scenes, where we use splits provided
by [19]. For further details, see Sec. B.3 and supplementary.

C.3. Downstream tasks

3D Object Detection in NeRF [19]: The task is to predict
3D OBBs. It entails regressing bounding box-offsets t =
(x0, y0, z0, x1, y1, z1,∆α,∆β), objectness score c and a
single objectness p for each voxel. The task is similar to
anchor-free RPN from [19].
Voxel-grid Super-Resolution: Given an input voxel
grid (V ) of resolution 1603, we predict an upsampled voxel-
grid of higher resolutions, such as 3843. This can be de-
noted as Vupsample = g(Vinput, resolution), where g is a U-
Net style encoder-decoder network. It is an important task
for fast grid upsampling, since querying an implicit MLP
for higher resolution is slow.
Semantic Voxel Labelling: Given an input grid G with
dimensions W × H × D × 4, the task is to predict the
class labels for each voxel. Every 3D voxel is assigned a
class label, Si,j,k which are integers ranging from 1 to n,
indicating the semantic category to which each voxel be-
longs. Mathematically, this can be represented as: Si,j,k ∈
{1, 2, . . . , n}, for 1 ≤ i ≤ W, 1 ≤ j ≤ H, 1 ≤ k ≤ D.
Due to the diversity of objects in a scene, this task requires
strong priors for generalization.

C.4. Comparisons with strong baselines for im-
proved downstream performance

3D Object Detection Downstream Task: The results of
our proposed method are summarized in Tables 1 and S4.
We consistently outperform the state-of-the-art baseline



Method 3D OBB on ScanNet

Recall@50↑ AP@50↑

S PT Diff. S PT Diff.

DepthContrast [86] 7.5 11.7 +4.2 2.4 4.1 +1.7
Scene Context [18] 7.5 12.2 +4.7 2.4 4.9 +2.5

NeRF-MAE (Ours) 32.3 39.5 +7.2 14.0 17.0 +3.0

Method 3D Segmentation on Front3D

mIOU↑ mAcc↑

S PT Diff. S PT Diff.

PointMAE [42] 15.1 17.3 +2.2 20.9 22.8 +1.9
PointM2AE [85] 17.5 21.1 +3.6 23.4 27.6 +4.2

NeRF-MAE (Ours) 24.9 34.5 +9.6 33.8 45.0 +11.2

Table S3. Quantitative comparison:(§ C.5) showing our approach’s superior result compared to strong 3D representation learning and 3D
MAE baselines using NeRF-rendered depth maps (Left), and our NeRF-grid as input (Right) [86] and [18] uses VoteNet, which requires
full annotations such as instance masks and mean class size. S denotes starting from scratch and PT denotes pretrained. Please refer to the
supplementary for more details.

methods on 3D object detection in NeRFs on both Front3D
and ScanNet scenes. Among our variants, our method
pre-trained on multiple data sources (Table 1, row 5) and
with augmentations enabled during pretraining performs the
best. Specifically, NeRF-MAE shows superior performance
on the unseen test-set by achieving an AP50 of 63% and
a Recall50 of 74.3%, hence demonstrating an absolute im-
provement of 21.5% in AP50 and 12.1% in Recall50 on the
Front-3D dataset. Our method also achieves superior per-
formance on ScanNet which is never seen during pretrain-
ing. We achieved an AP50 of 17% and a Recall50 of 39.5%,
hence demonstrating an absolute performance improvement
of 3% AP50 and 7.2% on Recall50 over the best-performing
baseline.
Semantic Voxel-labelling and Voxel-Super Resolution:
We further test our approach’s ability on two challenging
downstream tasks i.e. semantic voxel-labelling and voxel
super-resolution. The results are summarized in Tab. S5.
The results clearly show our proposed approach consis-
tently outperforms the strong baseline on all metrics which
further indicates our networks’ ability to learn good repre-
sentation for the challenging downstream 3D task. Specifi-
cally, we achieve 81% Acc, 45% mAcc, and 34.5% mIOU
on voxel-labeling task which equals an absolute perfor-
mance improvement of 6.8% Acc, 12.9% mAcc, and 9.8%
mIOU metric against NeRF-RPN [19] on Front3D. Our
method also achieves better 3D PSNR and low MSE met-
rics (absolute improvement of 1.02 for 2563 and 1.259
for 3843 grid show) on voxel-super resolution, showing our
network learns strong representation for this dense task.

C.5. Comparisons with strong 3D representation
learning baselines

Table S3 presents the quantitative evaluations of our ap-
proach’s performance in comparison with strong 3D repre-
sentation learning baselines. NeRF-MAE consistently out-
performs all competing methods with a clear margin. For a
fair comparison, we provide NeRF-rendered depth maps to
DepthContrast [86] and SceneContext [18] while providing
our NeRF-grid to Point-MAE [42] and PointM2AE [85].
Specifically, we achieve +7.2% Recall50 improvement and
+3% AP50 improvement, hence demonstrating an absolute

improvement number of +2.5% Recall50 and +0.5% AP50
on Scannet 3D OBB prediction task. We also achieve a
+9.6% mIOU improvement and +11.2% mAcc improve-
ment on Front3D voxel labelling, hence demonstrating an
absolute improvement number of +6% mIOU and +7%
mAcc over the best competing 3D pretraining baseline.
This shows our method learns better representations by uti-
lizing a dense volumetric NeRF-grid as well as an opacity-
aware reconstruction objective.

C.6. Scaling Performance and Ablation Analysis

We analyze our network’s ability to learn useful 3D repre-
sentations by studying how the amount and quality of pre-
training data affects downstream performance. We summa-
rize our results in Figure 3. To study scaling laws, we select
Front3D dataset and use 10%, 25%, 50%, and 100% of the
scenes for pretraining. Our test-set MSE and AP50 metrics
clearly show our network’s ability to improve with more
unlabeled data on the reconstruction and transfer learning
tasks. Specifically, we achieved an absolute AP50 im-
provement of 10% when adding 10x the number of scenes
for pretraining (1515 vs 151 scenes), emphasizing our
network is able to learn better on more unlabelled data. To
understand how the quality of NeRFs during the pretraining
stage affects downstream performance, we train the input
NeRFs to varying levels of accuracy, providing all 100% of
the scenes at various PSNR values. Our results show that
we can learn better representations, achieving downstream
AP25 improvement of 36% when adding higher quality
NeRFs to our pretraining (18 vs 28 2D PSNR).

Amount of unlabeled scenes on downstream 3D OBB
task: We evaluate our method on the 3D OBB prediction
task by limiting the available scenes for transfer learning.
As shown in Tab. S4, our method surpasses the baseline
across all scenarios, notably achieving a 42% AP50 with
less than half the data requirement of the strong baseline;
further highlighting our approach’s ability to enhance per-
formance in data-limited settings.



Input NeRF NeRF-RPN [18] NeRF-MAE (Ours)

Figure S5. Qualitative 3D OBB prediction: showing our ap-
proach’s superior results compared with NeRF-RPN [19].

D. Qualitative Results

We qualitatively analyze the performance of NeRF-MAE
on reconstruction, 3D OBB prediction, and voxel-labeling
tasks. As shown in Fig. 4, our approach outputs plausible
reconstructions showing our network’s ability to find spatial
relationships in the input data, which is useful for learning
good representations. We further show our networks’
superior 3D OBB prediction performance in Figure S5.
Our approach reconstructs accurate bounding boxes where
the state-of-the-art baseline struggles with incomplete or
erroneous detections. Finally, we show our networks’
superior semantic segmentation performance in Figure S6.
This result further emphasizes our network learns good
representations for a challenging 3D downstream task.

E. Network Architecture Details

In this section, we provide more details about our architec-
tural design. We use PyTorch [43] for implementation and
training our approach. We described in detail the encoder-
decoder U-Net style architecture for pretraining in Sec-
tion 2.1 (in the main paper). We train with a grid-resolution
160, a patch size p = 4, and mask out randomly 75% of the
patches. We use 4 Swin Transformer blocks and the spatial
feature size of the last block is 5 × 5 × 5 with the channel
dimension being 768. Consequently, we upsample features
with skip connection decoders and use 4 decoders and a fi-
nal convolution block to restore the original dimension i.e.
B×4×160×160×160. Below we specify the specifications
and architectures of our task-specific decoders.

Ground TruthNeRF-MAE (Ours)NeRF-RPN [18]

Wall

Floor

Zoomed-in

Sofa

Bed

Light

Table

Cabinet

Door

Window

Accessory

Figure S6. Qualitative voxel-labelling downstream task gner-
alization comparison: showing our approach’s superior results
compared with NeRF-RPN [19].

E.1. Task-specific Downstream 3D Heads

Our task-specific downstream heads are attached to the
Swin-Transformer encoder. The goal of task-specific heads
is to output dedicated meaningful outputs to regress the
useful 3D information such as 3D OBBs and semantic
labels for each voxel.

3D OBB Prediction: Our 3D OBB prediction head is
similar to NeRF-RPN [19] except that for all of our transfer
learning experiments and comparisons, we start with warm-
started encoder weights via our large-scale self-supervised
pretraining, whereas NeRF-RPN weights are started from
scratch. Starting from scratch here denotes that the network
weights were not pretrained on any other dataset but rather
NeRF-RPN initializes the weights of linear layers with
truncated normal distribution with a standard deviation of
0.02. We use the author’s [19] official implementation for
all the comparisons. Specifically, we utilize an anchor-free
RPN head from [19] which is based on the FCOS detector
lifted to the 3D domain via replacing 2D convolutions
with their 3D counterparts. We employ a combination
of focal loss, IOU loss, and binary cross-entropy loss for
downstream transfer learning task similar to [19].

3D Semantic Voxel-Labelling: The task of semantic voxel
labeling is described in detail in Section C.3 (in the main
paper). Specifically, we use the same decoders with skip
connections i.e. Di, as described in Section 2.1 (in the
main paper) where i ranges from 2 to 4. We replace D1

by incorporating an additional skip connection with the
encoded output from the input grid (G). This is followed
by a final convolutional output block to output semantic



MAE pre-trained encoder (Ours) NeRF-RPN [19] Start from scratch

#Labelled #Scenes Recall@25↑ Recall@50↑ AP@25↑ AP@50↑ Recall@25↑ Recall@50↑ AP@25↑ AP@50↑

10% 12 0.93 0.41 0.52 0.18 0.91 0.35 0.49 0.15
25% 30 0.94 0.51 0.67 0.36 0.94 0.49 0.67 0.29
50% 61 0.95 0.60 0.74 0.42 0.95 0.58 0.71 0.30
100% 122 0.96 0.67 0.79 0.54 0.96 0.62 0.78 0.41

Table S4. Effect of amount of 3D labeled scenes on downstream 3D object detection performance:(§ C.6) showing our approach’s
superior results compared to strong baseline. The FPN network weights in both cases are initialized from scratch.

Super-Resolution Downstream Task

2563 3843

Method PSNR↑ MSE ↓ PSNR↑ MSE ↓

NeRF-RPN [19] 16.25 0.024 16.08 0.025
Ours 17.27 0.019 17.34 0.019

Semantic Voxel-Labelling Downstream Task

Front3D [12] HM3D [48]

Metrics NeRF-RPN [19] Ours NeRF-RPN [19] Ours
mIOU↑ 0.249 0.345 0.109 0.186
mAcc↑ 0.338 0.450 0.160 0.264
Acc↑ 0.730 0.810 0.510 0.581

Table S5. Voxel semantic-labelling and super-resolution quantitative results:(§ C.4) showing superior performance of our method vs
NeRF-RPN [19].

volume (GS ∈ RH×W×D×C) of spatial dimension W,H,D
where W = H = D = 160 and C = 18 for the Front3D
dataset and 20 for the Habitat-Matterport3D dataset. We
use a weighted masked cross-entropy loss, balanced by the
inverse log propensity of each class, where propensity is
defined to be the frequency of each class in the training
dataset.

Voxel Super-Resolution: The task of voxel super-
resolution is described in detail in Section C.3 (in the main
paper). Specifically, we replace convolution decoders with
four 3D convolution layers with instance norm and ReLU
activation followed by an upsampling by a factor of 2. This
is followed by a final upsampling of 1.6 and 2.4 depend-
ing on the output resolution size of 2563 and 3843 and a
final 3D convolution. Similar to the original reconstruction
loss (Section 2.1 (in the main paper)), we employ a masked
color reconstruction loss enforced with the ground-truth up-
sampled grid.

E.2. Parameters

NeRF-MAE efficiently trains on diverse scenes using a
70 million parameter network, highlighting its capability
to handle complex and varied training data. Our Swin-S
Transformer encoder architecture as well as the anchor-free
RPN head remains the same as NeRF-RPN [19] for a fair
comparison on the downstream 3D OBB prediction task.
For reconstruction, we employ lightweight decoders (Sec-
tion 2.1 in the main paper) since for our transfer learning
experiments, we eventually discard the decoders and utilize
the feature pyramids for downstream 3D tasks as described
above.

F. Compute Resources

Our model was trained on 7 Nvidia A100 GPUs for 1200
epochs for 2 days and 17 hours. The cost for a pretraining
run is around 19 GPU days with a GPU capacity of 82GB
and an average utilization of 60%. To pretrain our repre-
sentation, each NeRF was trained for 8 minutes on a single
GPU for 100,000 steps. The total training time for training
3500 NeRF was 58 hours and finished in just over 2 days
on 8 Nvidia A100 GPUs. Note that our pretraining strategy
is agnostic to the NeRF technique used and can be replaced
with any of the faster NeRF techniques developed. We show
that our pretraining strategy equally applies to both instant-
NGP [37] trained NeRF and dense depth prior NeRF [51]
and doesn’t require any modification to our network archi-
tecture or training strategy.

G. Implementation Details

To pre-train NeRF-MAE, we utilize the Swin-S backbone
of the SwinTransformer. As detailed in Section 2.1 (in the
main paper), we utilize four swin blocks of depth 2, 2, 18,
and 2 with the number of heads in each block equalling 3,
6, 12, and 24. We pre-train both encoder and decoder net-
works for 1200 epochs with the Adam optimizer and a max-
imum learning rate of 3e−4, a weight decay of 1e−3 with a
one-cycle learning rate scheduling. We employ a batch size
of 32 for our pretraining. We additionally utilize online data
augmentation during both pretraining and transfer learning
stages. We employ random flip, rotation, and scaling aug-
mentation with a probability of 50%. Data augmentation
is shown to improve our pretraining, as described in Sec-
tion 3. For transfer learning, we train both our network and
the baseline NeRF-RPN [19] for 1000 epochs for 3D OBB
prediction and 500 epochs for voxel super-resolution with
the same learning rate and strategy as our pretraining stage
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Figure S7. Quantitative Comparison: We show further quantitative analysis of results reported in Table 1 and Table S5 in our main paper.
Specifically, we highlight improvement numbers for AP25 and AP50 on ScanNet [7] and Front3D [12] and mIOU and Acc for HM3D [48]
and Front3D [12] over the state-of-the-art baseline. Furthermore, we also show that increasing unlabelled posed 2D data from different
sources improves performance on 3D OBB prediction downstream task.

since we empirically determined that changing the learning
rate and strategy results in decreased performance for both
our method and the baseline. We additionally utilize a max-
imum normal gradient clip value of 0.1 and fine-tune the
network until convergence. We determine transfer learning
convergence on the hold-out validation set and employ early
stopping based on AP50 metrics for 3D OBB prediction, ac-
curacy metric for 3D semantic voxel labeling, and 3D PSNR
metric for voxel super-resolution experiments. For transfer
learning experiments, we use a batch size of 8.

H. Experiment Analysis

In this section, we present additional experimental analysis.
First, we present in detail an additional discussion on the
downstream 3D object detection, semantic voxel-labeling,
and voxel super-resolution tasks in Section H.1. We present
the additional analysis of scaling laws and ablation stud-
ies in Section H.2 specifically highlighting the architectural
ablation of adding skip connections to the decoder and dis-
cussing masking ratio ablation. We present additional in-
sights with comparison to 3D pretraining baselines in Sec-
tion H.3.

H.1. Comparison on Downstream 3D Tasks

We analyze all of the improvement numbers mentioned in
Table 1 and Table S5 by highlighting them in Figure S7.
One can clearly see our pretraining consistently improves
all metrics across different datasets, especially on ScanNet
which is omitted from our pretraining and used as a hold-
out dataset for our cross-dataset transfer experiments. The
results also clearly show that downstream 3D task numbers
for 3D OBB prediction improve with adding unlabelled data
from diverse sources, in this case, adding unlabelled HM3D
scenes to our pretraining improves ScanNet numbers show-
ing the efficacy of our pretraining strategy. Note that we
only utilized posed 2D data for pertaining, and no 3D infor-
mation was used in our pretraining pipeline.

Next, we present results for the task of voxel grid super-
resolution on HM3D dataset hold-out scenes never seen
by the model during pretraining or transfer learning. We
summarize these results in Table S6. One can clearly ob-
serve that our technique achieves a higher Recall@50 and
AP@50 compared to strong baseline, specifically showing
improvement of 9% in Recall@50 and 7% in AP@50, fur-
ther confirming the efficacy of our pretraining strategy on
a challenging dataset and 3D task. The results in Table S2



2563 3843

Method PSNR↑ MSE ↓ PSNR↑ MSE ↓

NeRF-RPN* [19] 14.70 0.034 14.65 0.035
NeRF-MAE(Ours) 15.01 0.032 15.20 0.030

3D OBB on HM3D [48]

Method AP@25↑ Recall@50↑

NeRF-RPN [19] 0.30 0.31
NeRF-MAE (Ours) 0.37 0.40

Table S6. Voxel super-resolution and 3D OBB prediction quantitative results for HM3D [48] test-set showing superior performance of
our method vs NeRF-RPN [19]. These results further confirm the findings of Tables 1 and S5 in our main paper that our pretraining helps
improve downstream tasks on various datasets.

Pretraining scenes on downstream performance

Pretraining Scenes Metrics

% Scenes # Scenes Recall@25↑ Recall@50↑ AP@25↑ AP@50↑

10% 151 0.94 0.61 0.74 0.45
25% 378 0.95 0.62 0.76 0.46
50% 757 0.95 0.66 0.77 0.51
100% 1515 0.96 0.67 0.79 0.54

Pretraining scenes on reconstruction quality

Pretraining Scenes Metrics

% Scenes # Scenes Aug. 3D PSNR ↑ MSE ↓
10% 151 ✗ 14.20 0.038
25% 378 ✗ 14.98 0.032
50% 757 ✗ 15.42 0.028

100% 1515 ✗ 16.00 0.025
100% 1515 ✓ 19.09 0.012

Table S7. Effect of percent of pretraining scenes on downstream 3D object detection (left) and voxel-grid reconstruction (right) showing
more unlabeled data helps learn better representation for downstream 3D tasks as well as better reconstruction quality of unmasked patches
in the input radiance and density grid

Front3D [19] ScanNet [7]

NeRF-MAE Recall@50↑ AP@25↑ Recall@50↑ AP@25↑

w/o Skip 0.73 0.83 0.39 0.54
w/ Skip 0.74 0.85 0.40 0.57

Masking Ratio Ablation

Method AP@25↑ AP@50↑
65% 0.805 0.519
75% 0.839 0.546
85% 0.814 0.512

Table S8. Effect of skip connections in the decoder (Left) and masking ratio ablation (Right): shows NeRF-MAE with skip connection
helps learn better representations for downstream tasks as well as 75% masking ratio achieves the best downstream performance.

(Left) further confirm the finding of Table S5 (Left), achiev-
ing consistently higher 3D PSNR and lower MSE metrics
for hold-out test scenes on HM3D for the challenging voxel
grid super-resolution task.

H.2. Additional Ablation Analysis

We report complete metrics for our scaling laws experi-
ments shown in Figure 3 of the main paper. We report
these metrics in Table S7. Both results further confirm
our findings in the paper that our results consistently im-
prove on reconstruction task as well as during transfer learn-
ing by utilizing more unlabelled data during pretraining.
We additionally include ablations to our NeRF-MAE pre-
training architecture in Table S8. We show the effect of
adding skip connections to the lightweight decoders in Ta-
ble S8 (Left). One can clearly see that adding skip connec-
tions during reconstruction increases the accuracy of down-
stream tasks, specifically increasing the AP25 by 2% and
3% on FRONT3D and ScanNet datasets respectively. We
also analyze the effect of masking ratio on downstream task
performance in Table S8 (Right). This table clearly shows
our design choice of using 75% as the masking ratio for in-
put radiance and density grid. This significantly increases
the accuracy of 3D object detection downstream task.

H.3. Comparison to 3D pretraining baselines
We present a detailed comparison to 3D pretraining base-
lines [18, 42, 85, 86] in Table S2 in our main paper. Here,

we share more insights on these results. Despite given
NeRF rendered depth maps (from the same NeRF model,
NeRF-MAE uses to sample its radiance and density grid
from) and ground truth poses, the baselines [18, 86] strug-
gle to improve performance in an extreme data-scarcity set-
ting (i.e. on cross-domain generalization where 90 scenes
are available for finetuning), whereas, our approach, NeRF-
MAE excels in these challenging scenarios. We conclude
that this is due to the local training structure of DepthCon-
trast and other MAE approaches, whereas NeRF-MAE pre-
training captures both the local and global structure of the
full-scenes with its Transformer-inspired architecture. De-
spite given NeRF’s radiance and density grid as an input
to point-based pretraining baselines [42, 85], we see de-
graded performance. We conclude that these approaches
use specialized modules like KNN used in Point-MAE [42],
DGCNN [65] used in Point-BERT [81] which are special-
ized for modeling surface level information and require ex-
tra parameter tunings such as group size and number of cen-
ters. Even though PointM2AE [85] improved performance
over PointMAE [42] using a hierarchical training, we show
that they still struggle for this challenging downstream task
where only a few labeled scenes are available for finetuning.
On the contrary, our approach utilized standard Transformer
modules and shows very effective downstream performance
with an opacity and radiance-aware masked reconstruction
objective.
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Figure S8. Multi-view Rendered vs Ground-truth posed RGB images from four distinct datasets used in this paper i.e. Front3D [12],
ScanNet [7], Habitat-Matterport3D [48] and Hypersim [50]. As mentioned in the main paper, we use Instant-NGP to train neural radiance
fields for Front3D, Hypersim and HM3D, whereas Scannet scenes are trained using dense depth prior nerf [51], following [19]
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Figure S9. Qualitative Rendered Depth (a) and Quantitative Detection Performance with a varying number of labeled scenes (b):
We show the qualitative comparison of ground truth vs rendered depth map from NeRFs used for our pretraining scenes showing faithful
reconstruction of geometry for our input data. We further show in the chart on the right (b), that our pretraining requires much less data to
achieve the same performance as the strong baseline.

I. Pretraining Datasets

We show our pretraining datasets in detail in Figure S1 and
Figure S8. First, we show the data processing flow for each
of the Front3D [12], Scannet [7], HM3D [48] and Hyper-
sim [50] dataset in Figure S1 starting with multi-view im-
ages to get a NeRF trained for each scene and finally get-
ting an explicit radiance and density grid for all scenes. We
train each scene for 100,000 steps to ensure high-quality
NeRF are obtained as input to our pretraining stage as fur-
ther confirmed by our experiments in Figure 3 in the main
paper, which quantitatively shows that better NeRF quality
results in better pretraining and leads to improved down-
stream 3D task performance. We further show rendered
RGB vs ground-truth RGB for selected scenes from all four
datasets in Figure S8. The figure confirms that our NeRF
quality for validation images is faithful to the ground-truth
images. Secondly, it shows that our pretraining dataset for
training good 3D representations from posed 2D data is very
diverse in realism, lightning, shadows, number of objects
in the scene as well as the setting of each scene i.e. rang-
ing from bedroom scenes to office and living room scenes.
This makes our 3D representation learning more robust to
the varying input data and helps it improve performance for
data outside the training data-distribution, as further con-
firmed in Section 3.

J. Limitations and Future Work

NeRF-MAE enables large-scale self-supervised pertaining
of 3D representations using NeRF’s unique radiance and
density grid as an input hence employing standard 3D

Transformer blocks to significantly improve various down-
stream 3D tasks. Although powerful, future work is still
required to improve the efficiency of training this represen-
tation to allow for seamless and efficient input of a large
variety of multi-view data from diverse data sources. This
could be achieved using fast linear attention blocks [64] or
employing a 3D version of state space models [11]. An-
other avenue for future work is communication between
neural rendering and masking. Concurrent works have
combined neural rendering with 3D representation learn-
ing [20, 88] albeit in a non-masking manner. Other works
have used correspondences to mine multi-view image pairs
to train MAE [15] and designed the task of cross-view
completion [68] for unsupervised 3D representation learn-
ing from 2D images. Our work NeRF-MAE bridges the
2D and 3D domains by using Neural Radiance Fields and
future work could look into backpropagating the network
weights through both our reconstructed grid as well as neu-
ral rendered images to further improve performance. An-
other promising avenue for future work is to explore various
downstream 3D tasks that could benefit from dense NeRF-
MAE pertaining such as 3D scene reconstruction [44, 72].
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