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Abstract

We are interested in achieving spatially accurate and tem-
porally consistent depth estimates only from a stream of 2D
RGB images. Despite the success of recent depth estima-
tion methods, we find that this is still difficult since existing
approaches often estimate depth only from 2D information
and overlook how the scene exists in 3D space. To tackle
the issue, we propose Multi-view Consistent depth estima-
tion via Coordinated image-based neural rendering (MC?)
which casts the depth estimation as a feature matching prob-
lem in 3D space, thereby constructing and aligning scene
features directly in 3D space from 2D images. First, we
introduce a rescaling technique that minimizes the ambiguity
of the depth estimation obtained independently from each
2D image. Using 2D images and corresponding rescaled
depths, we extract the context representation with our new
transformer architecture consisting of three-way factorized
attention. Moreover, to ensure alignment with 3D structures
without explicit geometry modeling, we propose an ordinal
volume rendering that respects the nature of 3D spaces. We
perform extensive comparisons on casually captured scenes
from various real-world datasets and significantly outper-
form previous work in depth estimation from a stream of
2D RGB images. Results highlight our method as a com-
prehensive framework that not only improves the accuracy
of monocular estimates but also bridges the gap to multi-
view consistent depth estimation that respects the 3D worlds
existing in given images.'

1. Introduction

Understanding the complex 3D geometry of the real world
by observing a stream of 2D views is a core part of human
intelligence, enabling complex cognitive abilities to predict
and interact with the environment. To tackle this challenge,
many recent works have focused on the translation of 2D
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RGB pixels to pixel-wise depth map, i.e., depth estimation [5,
7,32, 34, 35], even showing a quite accurate generalization
performance for an unseen single image. However, these
methods cast this problem as a per-pixel regression [12]
or classification [3, 17, 19] on each 2D image, thus, they
often show temporally inconsistent estimates across a stream
of 2D images. While there have been efforts to mitigate
the inconsistencies using additional supervision like optical
flows [25, 46, 50], the direct adjustment between inconsistent
estimates by imposing over-smooth transitions often neglects
fine spatial details and becomes inaccurate. More critically,
these approaches focus on the estimation of depth maps
only at given RGB images, thus they cannot infer depths of
unseen views.

In this paper, we focus on achieving both spatial and tem-
poral consistency in depth estimation by mitigating the afore-
mentioned shortcomings. The main idea is to directly render
a depth in 3D space by incorporating recent image-based
neural rendering techniques [18, 20]. This is different from
conventional approaches that estimate or optimize depths
from 2D-pixel spaces [5, 25, 46] or model explicit geome-
try [27, 33, 47]. This distinction allows our framework to
more accurately comprehend 3D scenes, as our approach
maintains spatial awareness (e.g., recognizes revisited areas
within the scene by performing synthesis in 3D space), thus
fully exploiting the advantage of multi-view images. Specif-
ically, we synthesize a depth map and corresponding RGB
image for the target view by interpolating the pixel values
from a given context set of input RGB images.

To synthesize a consistent and accurate depth map in
3D from a stream of 2D images, it is crucial to precisely
match correspondences between given multi-view images.
We conceptualize this problem as the task of constructing
contextual feature sets from 2D inputs and establishing cor-
respondences between these features in 3D spaces. Given
the challenge of decompressing the intricate spatial rela-
tionships encoded in 2D imagery from constructed context
feature sets, we propose Multi-view Consistent depth estima-
tion via Coordinated image-based neural rendering, coined
MC?, consisting of three components (see Figure 1):
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Figure 1. Overview. Overall illustration of our proposed method, MCZ2. MC? synthesizes a depth map and corresponding RGB image at
arbitrary camera angles using a stream of 2D RGB images as context features.

o Scaled feature extraction: MC? augments contextual fea-
ture sets with rescaled monocular depth estimates along-
side the image features from 2D RGB images, thereby
improving depth perception. Here, the insight for rescal-
ing is twofold: 1) Real-world scenarios often present a
discrepancy between monocular depth estimates and re-
constructed 3D scenes where the camera pose for each
image resides (i.e., scale ambiguity). 2) Depth values are
inherently relative, varying significantly across different
camera views for the same object (Section 2.1).

o Factorized attention for context features: To efficiently
compute the correspondence between the constructed fea-
tures, we introduce a new transformer architecture [44]
that consists of three different attentions. Specifically, each
attention is computed with factorized inputs across three
different dimensions: view, ray and pixel. By doing so,
our architecture can efficiently handle long sequences of
constructed features but still captures the correspondence
well (Section 2.2).

o Ordinal rendering: Finally, we introduce ordinal render-
ing which focuses on the ordering of features in 3D space
and respects the sequential nature of a ray in 3D. This
new rendering scheme effectively synthesizes depths and
provides flexibility even without relying on explicit ge-
ometry modeling, thus effectively handling even casually
captured extensive scenes observed over long trajectories
(Section 2.3).

We conduct comprehensive experiments to verify the
effectiveness of MC? on various casually captured, in-the-
wild datasets. Specifically, we evaluate our method on 1)
the scenes reconstructed using the SfM pipeline and 2) the
scenes reconstructed using visual odometry sensor data to
validate the effectiveness across various scenarios where the

3D world exists. We demonstrate the strong performance
of MC? where it significantly outperforms the prior depth
estimation approaches in both 3D worlds. Considering that
none of the previous methods achieves spatial accuracy and
temporal consistency simultaneously, we emphasize that
MC? achieves superior performance in all evaluation metrics
measuring spatial accuracy and temporal consistency. We
believe that our framework effectively incorporates monoc-
ular depth estimates to align them with the 3D world, thus
broadening the scope and applicability of depth estimation
across various applications where alignment between the 3D
world and depth is crucial.

2. Method

Our goal is an accurate depth estimation that are aligned
with camera poses by finding correspondences between con-
text views within 3D space while synthesizing realistic views
at arbitrary angles. We refer to Appendix A for preliminaries
and review related work in Appendix B.

2.1. Scaled Feature Extraction

Relying solely on RGB images to extract image features
F; using 2D CNN encoders often fails to capture corre-
spondences between images, especially in regions with no
texture or where geometric disparities exist despite similar
RGB values (See Appendix A). To address this limitation,
we propose to incorporate depth estimates of the context
views in addition to latent image features from the image en-
coder [21], denoted as D, as 3D geometric priors. Here, we
compute D; using existing depth estimation methods (e.g.,
ZoeDepth [5]). In practice, however, these depth estimates
often do not match the camera poses computed by Structure-
from-Motion (SfM) software (e.g., COLMAP [36, 37]) as



Table 1. Scaled depth estimation results. Comparison of the depth estimation performance of MC? and baselines on ScanNet, and
GMU-Kitchen datasets. Each scene in both datasets is reconstructed using SfM pipelines. Bold and underline indicate the best and runner-up,

respectively. OB indicates out-of-bounds when calculating Fq4

Metric Depth Accuracy Pose-scaled Depth Accuracy
Dataset Type Method 01(M  REL()  Eqh) Es() &M RELY)  Eqd)  Es(D)
DPT [10] 0.497  0.766 OB 0.727 0361  0.806 OB 1.680
Monocular  ZoeDepth [5] 0.829  0.136 2,676 0295 0.832  0.139 3.663 0.453
DepthAnything [49] 0.396  0.545 7.538 0.658 0251 0.503 40.381 1.606
ScanN CVD [25] 0.341  0.427 3.654  1.692 0301 0.456 11.820 0.768
caniet NVDS [46] 038 0.670 17.167 0.647 0326 0540  99.667 1.575
Multi-view IBRNet [45] 0.751  0.193 2.685 0405 0.736  0.202 10.049  1.080
GNT [42] 0.758  0.157 2173 0.289 0.735  0.162 2.438 0.503
MC? (ours) 0.862  0.117 2429 0279 0857 0.123 2.090 0.374
DPT [10] 0.465  4.060 OB OB 0302  4.891 OB 75.877
Monocular  ZoeDepth [5] 0.620 0.380 15299 1.176 0.562 1315 17.874  1.142
DepthAnything [49] 0.169 1206  22.824 1.608 0.160 2599 592.102 8.371
GMU CVD [25] 0490 1.167 19.502 1387 0426 1.518 332.763 3.195
Kitchen NVDS [46] 0329 0.646 17.717 12303 0.292 1.543  140.230 2439
Multi-view IBRNet [45] 0.720 0.384 14.169 1.164 0.501  1.308 36.602  1.507
GNT [42] 0.647 0390 14.831 1.167 0.400 1.250 9.886 1.083
MC? (ours) 0.759 0331 13992 1129 0.716 1.220 9.393 0.629

also mentioned in Appendix A.

To mitigate such a scale ambiguity in estimated depth
maps, we introduce a depth rescaling to preprocess monoc-
ular depth estimations. MC? first obtain both monocular
depth maps D, and sparse depth D} from SfM for each
context view C';. Since sparse reconstructions are noisy and
have outliers, MC?2 excludes a% of outlier minimum and
maximum values of each estimation, and these values are
not used in later stages. For the remaining valid pixel lo-
cations, MC? computes the median depth ratio f; > 0 as
an estimation of scale factor between SfM and monocular
estimates by dividing D) with D;. After that, each D, is
scaled with a factor of f;. This is simple yet effective at
handling scale ambiguity in reconstructed scenes on-the-fly
during optimization without needing the training or estimat-
ing additional values [33, 47]. Noteworthy, it also mitigates
the inconsistencies in each monocular depth estimate by
rescaling each mono estimated with the sparse depth maps
which assume the coherent object despite its sparsity.
Ensuring Depth Consistency Across Views. Despite the
rescaling that mitigates a scale ambiguity for each estimate,
depth values still remain relative to the camera positions
of the context views, resulting in different depth values in
different context views for the same object. To utilize these
rescaled depth values as additional sources for consistent
feature matching of samples along a ray, MC? projects each
scaled depth maps f; - D; onto the querying target view-
points using the camera poses P; to obtain proj(f; - D;).
By adjusting the distance from the context view to the cor-
responding target viewpoint, it is possible to see how the
scene would look from the target viewpoint. Furthermore,
MC? extracts a 2D feature map F for a projected depth
map proj(f; - D;) for each context view through a shared
convolutional encoder network [21] to induce more locality
in the projected depth maps proj(f; - D;).

2.2. Factorized Attention for Context Features

We synthesize the target views from a set of context features
{Z}N |, where Z; := (C;, F;, F}) € RE>Wxd_ Here, it
is crucial to identify the correspondence across N context
views while selectively focusing along epipolar lines within
the S samples of each context view. Therefore, we design a
new transformer architecture consisting of repeating three
different factorized transformer blocks inspired by the design
of video vision transformers [1]. To achieve this, for a target
image, MC? divides the target image into patches P, and
samples S points along a ray of each pixel coordinate within
the patch. Then, the model aggregates the projected 3D
samples on the target ray to the [V context views. Thus, the
resulting context features are indexed by patch, view, and
samples: z € RPXNxSxd,

For each view, patch, and ray transformer block of our
architecture, we reshape the hidden state into different as
RP-SXNxd RN-IxPxd and RP-N*Sxd (respectively) and
feed it to those encoder blocks. Remarkably, we find our
view transformer design captures correspondence between
views even in real-world complex situations, including occlu-
sion, motion, and camera blur that may include low-quality
frames. Moreover, because the patch transformer block is
computed within the same patches, it induces more geomet-
ric locality to the extracted features. It also allows captur-
ing the geometric properties of the target pixels, e.g., shape
edges, compared with using only two transformer blocks that
consider pixel-wise correspondence without locality. Since
the patches are derived from the target view and projected
onto the context views, the geometric properties of each
projected patch are effectively incorporated by reflecting
the relative camera transformation between the target and
context views. Lastly, the ray transformer block focuses on
the relationship among samples within the same views.



We concatenate [c1s] token to the context feature z and
use the [cls] output from our architecture to compute a
depth map in the following section. We empirically find that
using [c1s] token is crucial for disentanglement of depth
from color (e.g., the spot pattern should not be visible in
synthesized depth maps but it should be distinct in color
maps), compared with previous approaches using weighted
average feature pooling [42, 45] or cross-attention [40].

2.3. Ordinal Rendering

To render a depth map and corresponding color for a query
target view, we use the [c1s] output from the stacked fac-
torized transformer blocks discussed earlier in Section 2.2.
In conventional neural rendering, this involves volume ren-
dering [20, 23, 27, 45]. However, we find that this volume
rendering, which predicts independent density value for each
3D point, is often problematic in image-based neural ren-
dering [45] leading to incorrectly inferred geometry. This is
because image-based neural rendering often lacks explicit
modeling of density weights for absolute positions x but
rather tends to simply blend RGB values, as explained in
Appendix A. See Appendix E.2 for more details

To address this, instead of predicting an independent den-
sity weight for a 3D point, MC? models the density weights
of samples on a ray as a probability distribution. Specifically,
we adopt a binomial distribution based on the understanding
that a ray will only intersect a single surface and that inter-
sections should be denoted as 1 (for surfaces) or O (for empty
spaces). This approach ensures that the density weights are
ordered, which preserves the sequential nature of the ray
within 3D. To this end, MC? predicts a two-channel out-
put for both the mode ¢ and the temperature ¢, to compute
the probability score over the k' sample index as given by
the equation: p(k;S,q) = (2)qk(1 — q)VN=F where S is
the total number of samples following the design of recent
works [2, 5]. Then, we apply softmax({log (px)/t}7_,),
which yields normalized values to ensure numerical stability.
The temperature parameter ¢ modulates the sharpness of the
distribution, while the softmax normalization preserves the
unimodality of the logits. Finally, we compute the final pre-
dicted color for the target view using the above probability
scores as follows: C(r) = Zle pj(k)c; (k).

3. Experiment

In this section, we provide an empirical evaluation of MC? to
verify the suitability of our framework for estimating the
depth of real-world videos. Recall that we are interested
in estimating the depth at which the 3D scene exists, so
we consider two settings: 1) The scene is reconstructed
with an unknown arbitrary scale. In this setting, the camera
poses are obtained using an SfM pipeline and thus often
do not match the real world in metric scale. In addition,
we consider the second setting where 2) camera poses are

obtained using odometry sensors in the capture tools (aligned
with the real world in metric scale) in Section 3.2. Please
refer to Appendix C for a detailed experimental protocol.

3.1. Evaluation under SfM Reconstruction

We present the main results in the first scenario where the
3D world is reconstructed using SfM pipelines, thus not
residing in the real-world. We conduct experiments with two
in-the-wild, casually captured video datasets: ScanNet [8]
and GMU Kitchen [14], both containing depth information.
See Appendix C and Appendix D for a detailed description
of the experimental setup for the first scenario and baselines.
Table | summarizes the experimental results of MC? and
baselines. Overall, MC? significantly outperforms all the
prior depth estimation methods by a large margin, leading
to better scores across both aspects of spatial accuracy and
temporal consistency. We visualize the qualitative depth
estimation results of MC? and baselines in Appendix E.

3.2. Evaluation with Real-world Camera Poses

Next, we consider the scenario where the 3D world recon-
structed from 2D images is aligned with the real-world to
evaluate metric depth estimation performance. For the met-
ric depth estimations, we conduct experiments on the iPhone
dataset [13] that provides camera poses aligned with real-
world scales. Please refer to Appendix C for a detail.

Table 2. Unscaled depth estimation results.

Metric Depth Accuracy
Type  Method s RELW)  Eul) B
Monocular  ZoeDepth [5]  0.023 1.719 0.290 0.086
Multi-view MC? (ours) 0.377 0.561 0.171  0.049

Table 2 summarizes a quantitative comparison between
MC? and ZoeDepth. Our model, MC? demonstrates signifi-
cantly better performance than the previous state-of-the-art
metric depth model and these superior experimental results
underline the efficacy of MC? for capturing the consistent
depth estimate between long ranges of frames while accu-
rately inferring the real-world metric depth by considering
multi-view images as context to find correspondences be-
tween them. We visualize qualitative results in Appendix E.

4. Conclusion

In this paper, we propose MC?, a novel framework for multi-
view consistent depth estimation through image-based neural
rendering. In contrast to previous approaches that treat depth
estimation on a per-pixel basis, the main idea of MC? is
to estimate depth in 3D space using contextual feature sets
obtained from a stream of 2D RGB images. We believe that
MC? has established new paradigms in depth estimation by
enabling consistent and accurate 3D scene understanding
that respects the residing 3D world.
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A. Preliminaries

We review image-based view synthesis and scale ambiguity
in multi-view geometry that are essentials of our proposed
method.

A.1. Image-based View Synthesis

The goal of image-based view synthesis is to render novel
views by using pixel values from input RGB images as a
context set [38]. Recently, this approach combined with
deep learning techniques stands out for its efficiency in
handling casually captured long, unbounded scenes includ-
ing an outdoor scene [20]. This has been achieved as an
interpolation-based approach, it often does not require ex-
plicit geometry for memorizing the scenes compared to
dense representations such as neural radiance fields [27, 31],
voxel grids [22, 28, 41], or 3D Gaussian splatting [16, 48]
which requires the volume construction of proxy geometry
for every 3D point.

Formally, given a stream of N input views {C;, P;}}¥
as RGB images C; ¢ R *Wx3 and their corresponding
known camera poses P; € R3*#, image-based view synthe-
sis renders the target RGB image C from an arbitrary camera
angle P. This is achieved by calculating a 3D point x € R3
of each 2D-pixel coordinate s € R? of C, projecting x back
onto each of the 2D context views, and then interpolating
the RGB values at those projections. However, since each x
of the target C are not known a priori,” a ray r € R3 with
a view direction d € R? is cast from each pixel coordinate
s to accumulate the density of 3D sample points on the ray.
Specifically, image-based rendering samples S query 3D
points {x; }]5:1 along a ray from near depth to far depth, and
projects into all context views using the respective camera
poses. Then, the crucial task is to perform feature matching
across these IV context views for the S sampled points along
the epipolar lines to estimate the convergence to a 3D point
on the ray.

Image-based Neural Rendering. Recently, IBRNet [45]
has integrated this classical image-based rendering with re-
cent neural volume rendering (i.e., NeRF [27]). Specifically,
for each context view C;, IBRNet uses a convolutional en-
coder network [15] to obtain dense features from each RGB
image C; and extract features at the pixel location s using
these feature maps. When considering .S samples along the

2The obtained reconstructions with camera poses from Structure-from-
Motion software are extremely sparse with severe outliers.

ray r, IBRNet employs a ray transformer that processes the
sequence of aggregated features along the ray to predict per-
sample colors and densities (c;, ;). The final pixel color
C (r) for the ray is then computed from this sequence of col-
ors and densities using standard NeRF volumetric rendering

techniques [27].

However, we find that image-based neural rendering can
easily prioritize the simpler task of blending colors using
features obtained from contextual views over the more com-
plex task of establishing correspondence between sampled
contextual features along rays in 3D space.’ This occurs
because image-based neural rendering operated in 2D-pixel
space often lacks a comprehensive understanding of the
3D scene [9], leading to a preference for color blending
over accurate correspondence matching of 3D points. This
phenomenon is easily verified as shown in Appendix E.2,
where depth estimates aligned with camera poses suggest
that inferred geometry could be interpreted as correspon-
dence matching points. This challenge is compounded when
the model relies solely on RGB images, as RGB matching
can occur even when each projected pixel location in the
context views represents different objects, in the absence of
geometric priors.

A.2. Scale Ambiguity in Multi-view Geometry

Typically, Structure-from-Motion (SfM) methods such as
COLMAP [36, 37] are used in multi-view stereo to recon-
struct the scene from 2D images by registering camera pa-
rameters (extrinsic and intrinsic) for each frame C;. During
the multi-view stereo process, a fused sparse 3D point cloud
is derived, and per-view depth maps are obtained by project-
ing the fused 3D point clouds as a by-product of multi-view
stereo. However, the resulting depth map D) tends to be
extremely sparse and has many outliers. Furthermore, the
registered camera poses are not exactly aligned with the real-
world metric scale, as SfM reconstructs scenes only to scale,
i.e., each scene is scaled by arbitrary, individual scale factors
fi to align with real-world metric poses, leading to scale
ambiguity. Thus, although learning-based monocular depth
estimates provide a dense and quite accurate estimate for a
single image [5, 34, 35], there is often a mismatch in scale
between the SfM reconstructions and the learning-based
depth estimates.

3Blending one color may be sufficient to combine three RGB vectors.
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B. Related Work

Depth Estimation. Much of the work addresses the long-
standing problem of interpreting 3D spaces from flat 2D
RGB images by estimating depth from only given 2D im-
ages [7, 32]. In particular, recent advances aim at estimating
depth in absolute physical units (e.g., meters) from a sin-
gle RGB image [5, 35]. However, with only a single 2D
image, there is an inherent challenge in inferring spatial rela-
tionships [6], and although multiple images are fed to infer
geometry, they do not have the ability to account for the spa-
tial relationship between them, as the depths are estimated
independently for each image [46], thus exhibiting temporal
flickering. To mitigate this, there have been efforts to in-
corporate the spatial relationship between the given images,
such as the 3D camera pose information [25, 51]. However,
they still require the depth estimates to be obtained indepen-
dently at the pixel level, so the overall quality is limited by
the initial estimates. Compared to existing approaches that
estimate or optimize multi-view depths already translated
into pixel space, we shift the problem directly to feature
matching in 3D space, which is a novel setting.

Neural Rendering. Recently, neural scene renderings have
shown great potential in parameterizing complex 3D scenes
as a neural network by mapping 5D coordinates to RGB val-
ues and densities [27]. Intriguingly, these approaches have
exhibited strong generalization power to synthesize plau-
sible renderings at novel camera poses. While the results
are seemingly satisfactory, they often suffer from inaccu-
rate correspondence modeling [13] with ground-truth 3D
scenes. This often leads to degraded quality for novel views
or causes temporal flickering between views. In addition,
previous approaches to scene rendering [10, 13, 33] have
shown that incorporating depth observations into 3D scene
reconstruction facilitates the synthesis of realistic views in
a variety of scene reconstruction situations, e.g., few-shot
novel view synthesis, dynamic view modeling, reduced arti-
facts, or faster training. In contrast, we are interested in depth
estimation through neural rendering, a direction contrary to
prior efforts.

C. Experimental Details

Training Details. MC? is pre-trained our model with IBR
collected dataset [45] and LLFF datasets [26], consisting
of various real-world datasets captured from handheld cell-
phone captures using COLMAP [36, 37] to estimate the
camera pose and scene bounds for the captures. We train
our model using 8 context views with a batch size of 288
rays for 300k iterations and a patch size of 4 for a total of
16 rays per patch. We use the AdamW optimizer [24] with
a learning rate of 4¢~* for the image and depth coder and
2¢~4 for other components to facilitate capturing of features
for matching, combined with a cosine schedule to gradually

reduce the learning rate. All network parameters in MC? are
optimized end-to-end using a combined loss function that
includes a mean square error (MSE) term on the color output
and a scale-invariant log loss [4] for on the depth output,
comparing the predicted depth to the rescaled target view
derived from monocular depth estimates as described. The
model was then fine-tuned over 5k iterations per scene, us-
ing the same training configurations as in the corresponding
pretraining phase. All experiments were conducted on a 4
GPU (NVIDIA A100 40GB) and 24 instances of a virtual
CPU (Intel® Xeon® CPU @ 2.20GHz).

For dynamic scenes, where the epipolar constraints are
violated by the motion of moving objects, we integrate
MotionMLP as proposed in DynIBar [20], which addresses
dynamics in image-based neural rendering. Inspired by
DynlIBar, we also optimize MotionMLP with our networks
to aggregate multi-view image features in scene motion-
adjusted ray space, which allows us to correctly reason
about spatio-temporally varying geometry and appearance.
Unlike DynlIBar, which separates scenes into static and
dynamic parts with two different models for each, we
simplify training by optimizing a single network to handle
both static and dynamic parts. In addition, we do not employ
additional training strategies such as cross-time rendering,
and we do not add additional supervision (e.g., optical flow)
as in DynIBar to guide the optimization of MotionMLP
for better handling of moving objects for oblique novel
views. Nevertheless, we believe that advanced techniques
to address dynamics could improve the optimization in
handling complex motions within the scenes.

Dataset Details. We consider 3 benchmark datasets to eval-
uate our method compared to baselines. For ScanNet and
GMU-Kitchen datasets, we use three sampled scenes from
each dataset and each sampled scene contains 200 frames
in total. For all these frames, we run COLMAP [36, 37]
to obtain camera poses and sparse 3D point clouds. Depth
estimates from our approach and baselines were evaluated
on every 4th frame of the total frames.

o ScanNet [8]: To compare the performance of depth
estimation on indoor scenes, we perform experiments
on the ScanNet dataset with the following scenes:
scene0710.00, scene0736.00, scene0770.00,
each consisting of 200 frames in total. We resize the
RGB image to half the resolution of 480x 640, following
the ground truth depth map provided in the dataset, and
sample the images at stride 2 to handle a larger field of
view.

o GMU-Kitchen [14]: To compare the performance of
depth estimation in realistic cluttered environments, we
perform experiments on the GMU-Kitchen dataset with the

following scenes: gmu_scene_ 001, gmu_scene.004,



gmu_scene_006, each consisting of 200 frames in total.
We resize the RGB image and the corresponding depth
map to half the original resolution, 960540, and sam-
ple the images with stride 2 to handle a larger field of view.

o iPhone [13]: To compare the performance of depth
estimation in the metric scale, we consider the iPhone
dataset. Each sequence in the iPhone dataset is captured
by the handheld iPhone using the Record3D [39] mobile
applications, which provide camera poses and RGB and
corresponding lidar sensor depth information. We evaluate
the following scenes: apple, paper-windmill,
teddy, mochi-high-five, wheel, and sample 50
consecutive frames in each.

Evaluation Details. For evaluation, we measure depth accu-
racy using two different scale factor to show how well the
estimated depth is aligned with the ground truth depth and
obtained depth map respects to the reconstructed 3D scenes,
respectively. First, we compute a scale factor by compar-
ing the estimated depth maps with the ground truth depth,
following existing evaluation setups [17, 25, 46, 49]. Addi-
tionally, to measure how the estimated depth matches the
3D world in which the reconstructed scene resides, we also
compute a scale factor by comparing the estimated depth
maps to a sparse point cloud obtained from SfM. By doing
so, we show how well the estimated depth is aligned with
the ground truth depth, and obtained depth map respects the
reconstructed 3D scenes, respectively.

Evaluation Metrics. We evaluate the video depth estimation
considering both spatial accuracy and temporal consistency.
First, we adopt the commonly applied metrics and evaluation
setups [43, 49] which measure the spatial accuracy of depth
estimation by computing the absolute relative error (REL)
and §; with the median ground-truth scale strategy due to the
scale ambiguity. In particular, we derive a single scale factor
that matches the 3D world reconstructed from the image
stream with all the depth estimates for the video and apply
this to all depth estimates. We then calculate frame-wise
accuracy and average this across the entire video. While
this single scale factor ensures average consistency in depth
estimations, it doesn’t account for variations due to median
scaling. Therefore, to better evaluate temporal consistency,
we design two metrics, F/; and E; following Luo et al. [25].
E s measures the temporal instability of depth maps by track-
ing the 2D-pixel points in a video. To track pixel points, we
use a recent point tracker [11]. Ideally, the tracked 2D points
should converge to a single point in 3D, thus we compute
the Euclidean distances between 3D points over consecutive
frames. Moreover, £; measures the accumulated errors; al-
though 3D-tracked points may appear stable over successive
frames, errors can be accumulated, resulting in drift over
time. To quantify the drift for a given 3D point, we compute

the maximum eigenvalue of the covariance matrix of the 3D
trace, which intuitively indicates the dispersion of the 3D
points over time.

D. Description of Baseline Methods

In this section, we briefly describe the baselines of depth
estimation that we consider for evaluating our framework.
We compare MC? with baselines of two different model
types: monocular depth estimation and multi-view aware
approaches. For all of the baseline methods, we sincerely
follow their reported experimental setups.

Monocular Depth Estimations. For the monocular depth es-
timation approaches, we consider the following approaches
for baselines.

o DPT [10] is the relative depth estimation network that
deals with the large-scale variations in different types of
environments by factoring out the scale factor, thus depth
predictions per pixel are only consistent relative to each
other across image frames and the scale factor is unknown.
We use DPT-L in our comparisons

o ZoeDepth [5] is a monocular metric depth estimation
network, and we utilize ZoeD—-M12-NK which is trained
jointly on both indoor and outdoor domains.

o DepthAnything [49] proposes to train the relative
depth estimation network using large-scale unlabeled
RGB images without depth annotations. We perform
experiments using ViT-L encoder for DepthAnything.

Multi-view Depth Estimations. For the depth estimation
approaches that incorporate multi-view images for consis-
tent depth estimation across views, we compare with the
following approaches for baselines. First, we compare with
existing depth estimation that mainly uses data-driven pri-
ors to enforce smoothness between consecutive frames in a
video.

o CVD [25]: Following their experimental setups, we addi-
tionally run COLMAP with multi-view stereo to obtain
more dense depth maps and more accurate camera poses
compared to ones that we utilize during training.

o NVDS [46]: We use NVDS with the DPT network which
performs better than NVDS combined with MiDas [7] in
their reports for consistent depth estimates.

Moreover, we compare MC? with existing image-based
view synthesis which synthesizes target images by interpolat-
ing the context features, such as ours, which can incorporate
multiple images simultaneously to synthesize the depth map
and corresponding RGB images for the target viewpoint. In
particular, we exclude test images in context views and target
views when optimizing IBRNet [45], GNT [42], and ours to
synthesize depth for unseen viewpoints.



Table 3. Scaled depth estimation results. Comparison of the depth estimation performance of MC? and baselines which require geometry
modeling on ScanNet and GMU-Kitchen datasets. Each scene in both datasets is reconstructed using SfM pipelines.

Metric Depth Accuracy Pose-scaled Depth Accuracy
Dataset Type Method oM  REL(D)  Ea)  E.) 6 RELY)  Eud)  Es(D
NeRF Roessle et al. [33]  0.510  0.308 4.128 0465 0.276  0.701 119.390 1.885
Scanhet Image-based MC? (ours) 0.862  0.117 2429 0279 0.857  0.123 2.090 0.374
GMU NeRF Roessle et al. [33] 0.640  0.441 14462 1.180 0.346 1.288 30.668  1.478
Kitchen  [mage-based MC? (ours) 0.759  0.331 13.992  1.129 0.716 1.220 9.393 0.629

Table 4. Unscaled depth estimation results. Comparison of the depth estimation of MC? and baselines on iPhone dataset. Each sequence
on the iPhone dataset is reconstructed using a visual odometry sensor, aligned with real-world metric depth.

Metric Depth Accuracy
Dataset Type Method (1) RELW{) Eq()) EsQ)
NeRF Nerfies [29] 0.076  0.563 0.041 0.032
iPhone HyperNeRF [30] 0.028  0.675 0.051  0.045
Image-based MC? (ours) 0.377 0.561 0.171  0.049

. ; 2 &
Ground Truth Lidar Sensor Nerfies HyperNeRF MC2 (Ours)

Figure 2. Video depth estimation results. Illustration of depth estimates from MC? and baselines. Each video is captured with a handheld
iPhone Pro. The color bar on the right is in meters (m).

o IBRNet [45] uses a ray transformer that estimates of color and depth. We utilize pretrained GNT on their
radiance and volume density at continuous 5D locations official code implementation and additionally fine-tune
by allowing visibility reasoning over larger spatial scales. the network for 10k following their fine-tuning strategies.

Compared to IBRNet, we propose a view and patch
transformer. We utilize pretrained IBRNet on their
official code implementation and additionally fine-tune E. More Experimental Results
the network for 10k following their fine-tuning strategies.

E.1. Depth Estimations relying on 3D Volumes.
o GNT [42] utilizes a ray and view transformer. Compared

to ours, they compute cross-attention given a camera We additionally compare with .the neural scene rendering
viewpoint as query and context features as key and values approaches that model scenes using the 3D geometry volume
in attention. As shown in Appendix E.4, we found that of NeRF, as opposed to image-based neural renderings such
such an architectural design often leads to entanglement as IBRNet, GNT, and ours that do not rely on geometry

fitting.



First, to verify the efficacy of our depth rescaling scheme
without explicit geometry, we consider Roessle et al. [33] as
a baseline that obtains dense depth maps adapted to the given
camera poses. Specifically, Roessle et al. [33] employs depth
completion on the SfM depth to obtain dense depth priors.
For this, they train a depth completion network before opti-
mizing NeRF. After training the depth completion network,
one can obtain dense depth priors from the trained network,
and then supervise the geometry recovered by NeRF using
them.

As shown in Table 3, ours achieve better depth estimation
results across all metrics. In addition, our MC?2 is computa-
tionally efficient, since we use only a rescaling scheme to
adjust the depth maps to the given camera poses on the fly,
without additional training of monocular depth estimation
networks.

Next, we compare with dynamic neural scene rendering
approaches to conduct depth estimation with moving ob-
jects. For this, we consider Nerfies [29], HyperNeRF [30]
as baselines and the results is shown in Table 4.

Although Nerfies and HyperNeRF have lower F; and E
scores, this is because F; and E are used to measure con-
sistency with a point tracker by tracking consecutive depth
maps, rather than measuring the accuracy of depth estimates.
Since both methods rely on 3D geometry to model the scene,
they may achieve higher scores than ours regardless of the
accuracy of the estimated depth maps, as evidenced by a
significantly lower d; score for them compared to ours. We
also visualize the depth estimation results qualitatively in
Appendix F.

E.2. Volume Rendering in Image-based View Syn-
thesis.

As shown in Figure 3, IBRNet typically assigns the highest
weight to the last index in the sample along the ray. This
phenomenon occurs primarily when IBRNet struggles to
identify correspondences between context features derived
solely from image encoders, especially in textureless regions
(e.g., walls, flat surfaces). We conjecture that this happens
because IBRNet’s primary focus is on plausible view syn-
thesis rather than accurate depth estimation. Such a bias
manifests itself in the following ways: objects that are pre-
dicted to be farther away and thus to have greater depth tend
to show only small pixel shifts across different viewpoints,
even with significant changes in camera perspective; on the
other hand, objects that are perceived to be closer show
pronounced pixel movement within the images, even with
minimal changes in camera angle. Thus, when optimizing
image-based neural rendering networks for color image syn-
thesis, there is a strong bias toward synthesizing images in
which the relative motion of objects matches their expected
real-world behavior. This prioritizes visual realism at the ex-
pense of accurate depth estimation, especially in the absence

Ground Truth

IBRNet

RGB Image

Figure 3. Qualitative results of IBRNet on ScanNet. Illustration
of depth estimates and corresponding synthesized RGB images
from IBRNet [45]. The color bar on the right side of the depth
maps indicates the depth scale in meters. Additionally, the index
value with the largest predicted density weight from IBRNet is
shown (right), and the color bar indicates the sample index in the
range of 0 to 127.

Ground Truth

MC? (Ours)

Temperature
RGB Image

Figure 4. Qualitative results of MC? on ScanNet. Illustration of
depth estimates and corresponding synthesized RGB images from
MC?2. The color bar on the right side of the depth maps indicates
the depth scale in meters. Probability and temperature are also
visualized.

of explicit geometric modeling such as image-based view
synthesis.

E.3. Ordinal Rendering.

We introduce ordinal rendering, which models density
weights along a ray rather than as isolated densities for in-
dividual 3D points. This approach, illustrated in Figure 4,
allows for a more accurate final depth map. We visualize the
probability values that indicate the confidence in the corre-
sponding predicted weights at the sample index associated
with the model, strongly considering that the actual depth
falls within the range of that bin. In addition, by adjust-
ing the temperature values, one can control the smoothness
of the distribution, with higher temperatures resulting in a
more even probability distribution across all depth bins. This
helps to reduce the dominance of a single, overly confident
depth prediction in favor of a more balanced, average depth
output. This method differs from IBRNet in that it avoids
assigning disproportionate weight to the extremes of the
sample range and instead controls the smoothness of the
distribution through temperature adjustments. With this ar-



Table 5. Ablation study. Results show that our main contributions—rescaled depth feature, three-way factorized transformer, and ordinal
rendering—Ilead to a significant performance gain in depth estimations.

Photometric Metric Depth Accuracy Pose-based Depth Accuracy
Depth Three-way Ordinal
Rescaling  Transformers ~ Rendering PSNR(1) LPIPS()) d&i() RELJ) Eq«()) Es() 6(h) REL() Ead) Es()
X v 4 19.079 0.208 0.663 0364 30218 1946 0.618 1420 26962 1.528
4 X 4 17.792 0.245 0453 0487 32018 1994 0.378 1.511 35403 2.008
v v X 18.076 0.285 0.656 0372 30.260 1.948 0.621 1.447  31.890 1.648
4 v 4 20.213 0.165 0.799 0330 27485 1.867 0.755 1.409 5.564  0.665

chitectural design, we predict the distribution of depths while
respecting the inherent order and spacing of depth levels and
addressing issues of discretization and arbitrariness present
in non-ordinal approaches.

E.4. Ablation studies.

To verify the effectiveness of each component, we conduct
an ablation study of our model gmu_scene_001 under the
GMU Kitchen datasets by removing each component and
then measuring the depth estimation performance in addi-
tion to the photometric synthesis results of the target view.
First, when removing depth rescaling, we exclude only the
rescaling and projection component, while retaining all other
depth-related components, including depth encoders and
shift-invariant loss. When removing the three-way factorized
transformers, we replace our proposed three-way factorized
transform blocks with ray transformers. Finally, when re-
moving the ordinal rendering, we replace ordinal rendering
with alpha blending following conventional neural rendering
approaches or image-based view synthesis approaches. As
verified in Table 5, without any of the components consisting
of MC?2, the quality of depth estimation gets dramatically
worse, which validates how MC? effectively estimates depth.



F. More Qualitative Results

round Truth MCZ (Ours) Ground Truth ZoeDepth IBRNet MCZ (Ours)

G

Figure 5. Qualitative comparison on ScanNet. Illustration of depth estimates and the corresponding synthesized RGB images. MC? renders
a spatially accurate depth map while capturing thin structures, e.g., wire and radiator (upper) and chair legs (bottom), which is often missing
even with Ground Truth obtained with lidar sensors. In addition, MC? identifies the difference between shape and color while synthesizing
deblurred color images in high quality with corresponding accurate depth maps. On the other hand, IBRNet and GNT struggle to distinguish
this, demonstrated in the texture pattern observed at synthesized depth maps.
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Figure 6. Qualitative video depth estimation results. Illustration of depth estimates and the corresponding synthesized RGB images. Each
video is captured with a handheld iPhone Pro. The color bar on the right is in meters (m). MC?successfully measures the distance even for
unseen views between the camera and the object of interest by considering multiple viewpoints, while monocular metric depth estimate
from ZoeDepth [5] overpredicts the object of interest compared to real metric units by predicting it to be farther than 2 meters. In addition,
MC?2 achieves spatially accurate depth estimates, even more than lidar depth measurements. For example, MC2 successfully measures the
distance between the object and the background while capturing nuanced distances, especially in the plant example (below) where lidar
measurements fail to distinguish the plant from the wall and finer gaps between the leaves with notoriously noisy around edges.
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Figure 7. Qualitative comparison on iPhone dataset. Illustration of depth estimates and the corresponding synthesized RGB images on
mochi-high-five sequence. The color bar on the right is in meters (m). MC? provides consistent depth estimates over time, capturing subtle
movements such as a cat turning its head while remaining seated. On the other hand, ZoeDepth provides inconsistent estimates for the front
of the sofa where the cat is sitting, as shown by the differences between the top and bottom images.



G. Limitation

Limitation and Future Works. MC? relies on precomputed
camera poses, often derived from Structure-from-Motion,
such as COLMAP [36, 37] or provided by the mobile app,
such as Record3D [39]. An interesting future direction is
to integrate the MC? with the reconstruction of the scenes.
This could include the development of algorithms capable of
refining imprecise camera poses or, alternatively, optimizing
camera poses in parallel with other aspects of scene under-
standing. This approach could improve the accuracy and
applicability of MC? in various real-world scenarios, lead-
ing to improved depth estimation and scene reconstruction
results.

Potential Negative Societal Impact. While depth estima-
tion by MC? can be beneficial for various applications such
as autonomous driving, 3D modeling, and augmented real-
ity, the emergence of unexpected behavior or undesirable
artifacts within MC? can lead to misrepresentations of real-
world environments. In domains that rely heavily on ac-
curate data for critical decisions, such as surveillance and
autonomous vehicle navigation, the introduction of unex-
pected behaviors or artifacts must be carefully managed. To
ensure the reliability of systems using depth estimation, it
is essential to conduct thorough investigations and imple-
ment robust mitigation strategies to minimize potential risks,
thereby increasing the overall safety and effectiveness of
these applications.



	. Introduction
	. Method
	. Scaled Feature Extraction
	. Factorized Attention for Context Features
	. Ordinal Rendering

	. Experiment
	. Evaluation under SfM Reconstruction
	. Evaluation with Real-world Camera Poses

	. Conclusion
	. Preliminaries
	. Image-based View Synthesis
	. Scale Ambiguity in Multi-view Geometry

	. Related Work
	. Experimental Details
	. Description of Baseline Methods
	. More Experimental Results
	. Depth Estimations relying on 3D Volumes.
	. Volume Rendering in Image-based View Synthesis.
	. Ordinal Rendering.
	. Ablation studies.

	. More Qualitative Results
	. Limitation

