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Abstract

Reconstructing neural radiance fields from limited or
sparse views has given very promising potential for this field
of research and its future development. Previous methods
usually constrain the reconstruction process with additional
priors, e.g. semantic information from observed views were
exploited as a regularization for unseen views. Neverthe-
less, patch-based regularization only gives rough supervi-
sion to the field and it lacks an additional guide for training
views. Instead, we propose a Self-Conditioned NeRF (SC-
NeRF) in this paper that can learn extra information from
features extracted from pre-trained neural networks for the
sparse training views, and use as extra guide for the train-
ing of the radian field. With such extra feature guides, SCN-
eRF predicts more accurate color and density when synthe-
sizing novel views. Experimental results have shown that
SCNeRF can effectively improve the quality of the synthe-
sized novel views with only limited or sparse inputs.

1. Introduction
Neural radiance field (NeRF), with an impressive abil-
ity of novel-view synthesis, and its related studies [1, 7]
have grown rapidly in recent years. Nevertheless, NeRF is
trained on a large number of views, typically requiring tens
of views, which has imposed various restrictions on its po-
tential applications. It is indeed difficult, if not impractical,
to collect such large numbers of views for training purpose
in some real-life scenarios.

Learning a NeRF from sparse inputs, therefore, has at-
tracted a great deal of research attentions. However, train-
ing a NeRF with input views as few as three is very chal-
lenging, and the resulted novel views have significantly de-
graded quality. One approach of existing methods is to pre-
dict a new scene by learning some knowledge from similar
scenes. For example, PixelNeRF [13] proposed to condition
a NeRF on convolutional feature maps projected from each
view. Another approach is to provide regularization for the
unobserved views by introducing different priors. RegN-
eRF [8] regularizes unobserved views using geometry pri-
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Figure 1. Feature guidance in SCNeRF: we learn the feature field
and RGB radiance field simultaneously and the abstract feature is
employed to help the learning of RGB field. The feature field and
RGB radiance field share the same geometry.

orities and appearance estimation from a 2D model. Diet-
NeRF [3] constrains the learning process by measuring the
high-level semantic similarity between the unobserved view
and the input views. Although these methods can improve
the result in a sparse setting, patch-based regularization can
only provide local supervision.

We argue that the RGB representation learned from the
NeRF training process often lacks a holistic understand-
ing of the image content. The novel view rendered from
this representation is highly sensitive to changes in lighting
and viewing angles, making the task even more challenging.
Therefore, we propose to improve NeRF by taking advan-
tage of the abstract representations extracted from images,
which have a view-independent feature field and can effec-
tively help novel view synthesis. More specifically, we first
extract feature maps from a pre-trained CNN model as an
abstract representation and learn a feature field. For each
point in the field, the feature is utilized as a condition to
predict RGB values. The main contributions of the present
work are as follows:
• We propose a novel approach that exploits feature repre-

sentation to enhance the scene representation of NeRF for
sparse view inputs.

• Experiments have shown the effectiveness of our pro-
posed method. Compared with the method that uses the



semantic feature for sparse view inputs, SCNeRF can ef-
fectively improve performance.

2. Related Work
Novel-view Synthesis with Sparse Inputs by Regulariz-
ing Appearance and Geometry. Diet-NeRF [3] regular-
izes the field by comparing the semantic embedding of un-
seen viewpoints to that of known viewpoints. RegNeRF [8]
regularizes unobserved views using patch-based depth and
color constraints. Instead of constraining the field from un-
observed views, other methods explored to improve the re-
sult from the limited training views. SparseNeRF [9] distills
depth information predicted from a prior model to constrain
the geometry. FreeNeRF [12] explores frequency of posi-
tion encoding and trains the field in a coarse-to-fine process.
ReconFusion [11] exploits a diffusion prior for novel view
synthesis. Although regularization from unobserved views
is useful for sparse input, existing methods do not fully ex-
plore using prior information as a guidance for training.
Semantic Decomposition of Neural Scene Representa-
tions Many methods explore detailed semantic information
to understand the neural radiance field. Zhi et al. [16] used
semantic labels as additional supervision to learn a field for
segmentation. DFF [5] uses semantic feature as a super-
vision to learn a semantic field that can decomposite dif-
ferent parts of a scene. LeRF [4] distinguishes different
parts of a scene through a language model. Furthermore,
Latent-NeRF [6] generates 3D scenes represented by latent
3D representations. These works show that a semantic field
can also be learned from 2D supervision. Nevertheless, the
detailed information of each 3D point is not known yet, in
particular in field learning under sparse inputs.

3. Method
3.1. Preliminary

Figure 2(a) shows the typical network structure to learn the
RGB radiance field. Given a coordinate point pi(x, y, z),
a network MLPσ(p) is used to predict bottleneck feature
fb and density σ. The feature fb is then fed into an MLP
MLPc(p) to predict the corresponding color ci conditioned
on the view direction d.

(σi, fb) = MLPσ(pi) (1)

ci = MLPc((fb, d)) (2)

With density σi, the corresponding weight wi is then com-
puted by

wi = Ti(1− exp(−σiδi)), (3)

where δi is the distance to the adjacent sample point, and
Ti = exp(−

∑i−1
j=1 σjδj) is the transmittance of the ray

which presents the probability that information from the 1st

Figure 2. Network structure comparison of different methods: (a)
original structure of NeRF [7]. (b) Other methods [5, 15] learned
a network to predict feature representation and color of a point
simultaneously. (c) our network predicts the color of a point with
the guidance of its feature prediction.

sampled point can pass through to the i−1th sampled point.
The pixel color can be rendered by

C(r) =

N∑
i=1

wi(r)ci(r), (4)

where N is the number of sampled points along r between
the predefined near and far planes. For model training,
Mean Square Error (MSE) is exploited to minimize the dis-
tance between rendered colors and ground truth colors:

Lc = ||C(r)− Cgt(r)||22 (5)

3.2. SCNeRF

Different from the typical NeRF, we propose to predict both
color and feature fields, and the knowledge of the predicted
feature field can explicitly guide the color prediction. The
network structure of our proposed method is shown in Fig-
ure 2(c).
Feature Supervision For the input view images, we first ex-
tract the corresponding feature maps F gt

f from the ReLU3-1
layer of the pre-trained VGG model, which are trained on
the ImageNet dataset for classification. Based on the shared
feature fb, an MPL layer is exploited to predict the features
of input images:

fextra = MLPextra(pi) (6)

where fextra represents the share feature at the point pi.
Similar to the rendering of pixel color, we render the fea-
ture representation with eqs (3) and (4), and optimize the
model parameters by minimizing the distance between the



Figure 3. Qualitative comparison results: with extra feature guides, our method can reduce floaters and reconstruct better quality objects.

rendered feature representations Fextra(r) and the extracted
features from pre-trained model with L2 loss:

Linfor = ||Fextra(r)− F gt
extra(r)||22 (7)

Feature guidance In order to exploit the knowledge of fea-
ture field to improve the RGB field, we concatenate the
shared feature fb and the predicted feature representation
fextra, and use an MLP layer MLPc to enhance the scene
representation and predict the pixel color as follows:

ci = MLPc(fb, d; fextra) (8)

The overall loss function is:

L = λLinfor + Lc, (9)

where λ is a weight balances the constraint of extra infor-
mation.

4. Experimental Results
Dataset. We conducted experiments on the LLFF dataset.
LLFF consists of 8 forward-facing scenes. Following [7],
we kept every 8th image as the hold-out test set and selected
the training views evenly from the remaining images. We
report our result of setting in 3 views.
Baseline and Evaluation Metrics. DietNeRF [3] is chosen
as our baseline, because it synthesizes well results given
spare views. Different from DietNeRF [3] that extracts se-
mantic representation from CLIP model to guarantee se-
mantic consistency between different views, we extract the
feature from CNN model which not only contains the ab-
stract representations of the image but also the local spatial
information, and use it to guide the learning of color predic-
tion of 3D scene. Based on the public code of DietNeRF [3],

we trained our baseline model in 3 views. To evaluate the
view synthesis performance, we used PSNR, SSIM [10] and
LPIPS [14] as evaluation metrics. In the ablation study, we
conducted the experiments on flower scene and compared
these metrics within this context as shown in Tables 2–3.
For fair comparison, we conducted the experiments on all
scenes and calculate the mean of these metrics as shown in
Table 1.
Implementation Details. We implement our framework
based on the network structure of Figure 2(c). We used
Adam optimizer to optimize models, with the exponential
learning rate decreasing from 5 × 10−4 to 5 × 10−5. Each
scene was trained for 200k iteration. We used an ImageNet
pre-trained VGG encoder [2] to extract image feature and
set λ to 0.01 in our experiment. The model can be replaced
with more powerful CNN models, like ResNet.

4.1. Comparison with SOAT Methods

The qualitative and quantitative comparison results with the
SOAT methods are shown in Table 1 and Figure 3, respec-
tively. We compared the SOAT methods that do not use
depth information, Mip-NeRF [1] and DietNeRF [3]. As
shown in Table 1, our method surpasses both Mip-NeRF [1]
and DietNeRF [3] in terms of all the metrics. As shown in
Figure 3, our method can also reconstruct some more rea-
sonable information of scene. It’s important to note that
unlike DietNeRF [3], our method is supervised solely with
sparse input views, without the need for a sampling strategy
to acquire unobserved views during training.

4.2. Ablation Studies

To show the effectiveness of our framework, we compare
our method with the NeRF [7] structure Figure 2 (a) and the
DFF [5] structure Figure 2 (b) in a sparse view setting. DFF



Table 1. Quantitative Comparison with SOAT methods.

Method PSNR↑ SSIM↑ LPIPS↓
Mip-NeRF 14.62 0.351 0.495
DietNeRF 14.94 0.370 0.496

Ours 17.80 0.568 0.432

Table 2. Ablation study evaluating the impact of the proposed
modules on the flower scene of LLFF dataset.

Method PSNR↑ SSIM ↑ LPIPS↓
w/o FS 17.78 0.540 0.434
w/ FS 16.01 0.461 0.534
Full 18.65 0.567 0.428

also learns feature representtion and color from the train
view simultaneously. However, feature and color are pre-
dicted parallel from a bottleneck in DFF.

We conducted the experiments on the flower scene of
LLFF dataset to evaluate the effect of different modules of
our method in a setting of 3 views. We trained a feature field
and a radiance field without the feature guidance similar to
the DFF [5]. The qualitative and quantitative comparison
results are shown in Figure 4 and Table 2, respectively. The
feature guidance can reduce floaters [1] in the scene. As
shown, in a sparse setting, the prediction of color without
feature representation as a condition (e.g., [5]) leads to an
under-constrained reconstruction field (Figure 4(a)). Fur-
thermore, simultaneous learning of feature representation
exacerbates the issue (Figure 4(b)). However, this obser-
vation conversely highlights that additional feature supervi-
sion has an impact on the geometry of the field. By incor-
porating our feature guidance, the field is capable of recon-
structing a more meaningful scene. Moreover, compared
to solely feature supervision, our method excels in captur-
ing finer details of the leaves (Figure 4(c)). In addition, the
feature Linfor loss can also constrain the geometry of the
scene and lead to fewer artifacts.

4.3. Discussion

We explore the effect of loss weight λ in eq. (9) and the
different layers for extracting the features as guidance for
color prediction. It can be seen from Table 3 that the model
obtains the best result when the λ is set as 0.1 in terms of
PSNR and SSIM. As shown in Table 4, when using the
feature from Relu1-1 layer to guide color prediction, our
method achieves the best results. This is because that the
feature maps from lower layers have more low-level infor-
mation such as color, edge and corners, which provide more
detail information to guide the novel view image synthesis.

5. Conclusions
In this paper, we propose a novel framework SCNeRF that
synthesizes novel views with sparse view inputs. To tackle

Figure 4. Ablation study of our proposed different modules: the
result with feature supervision is better than that without feature
supervision and the results with feature guidance are better than
that with feature supervision. The first row is the depth map and
the second row is the synthesized novel view image.

Table 3. Comparison of different loss weights for the flower scene
of the LLFF dataset

λ PSNR↑ SSIM↑ LIPIPS↓
0.1 18.86 0.589 0.408
0.01 18.65 0.567 0.428
0.001 18.29 0.583 0.400

Table 4. Effectiveness comparison of using features extracted from
different layers as guidance for color prediction of novel view im-
ages on the flower scene of the LLFF dataset.

Layers PSNR↑ SSIM↑ LIPIPS↓
Relu1-1 18.93 0.594 0.378
Relu2-1 18.61 0.593 0.391
Relu3-1 18.65 0.567 0.428

the under-constrained few-shot NeRF problem, our pro-
posed SCNeRF learns the feature field to help the learning
of the color field. The experimental results have also shown
that our method significantly improves the synthesis per-
formance in a sparse setting and is complementary to the
previous methods.
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