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Nope-NeRF, ~100 minutes, 0.68

NeRFmm, ~30 minutes, 0.53CF-3DGS, 60 seconds, 0.59

Ours, 37 seconds(training), 0.89(SSIM)

Figure 1. Novel View Synthesis Comparisons (Sparse-View, Pose-Free). We introduce InstantSplat, an efficient framework for simul-
taneous pose estimation and novel view synthesis in unrestricted scenarios. This approach incorporates 3D priors derived from a dense
stereo model, a streamlined framework capable of reconstructing 3D scenes and enabling view synthesis within one minute, for large-scale
scenes. Moreover, our method markedly enhances both pose estimation accuracy and rendering quality.

Abstract

While novel view synthesis (NVS) has made substan-
tial progress in 3D computer vision, it typically requires
an initial estimation of camera intrinsics and extrinsics
from dense viewpoints. This pre-processing is usually con-
ducted via a Structure-from-Motion (SfM) pipeline, a pro-
cedure that can be slow and unreliable, particularly in
sparse-view scenarios with insufficient matched features for
accurate reconstruction. In this work, we integrate the
strengths of point-based representations (e.g., 3D Gaus-
sian Splatting, 3D-GS) with end-to-end dense stereo mod-
els (DUSt3R) to tackle the complex yet unresolved is-
sues in NVS under unconstrained settings, which encom-
passes pose-free and sparse view challenges. Our frame-
work, InstantSplat, unifies dense stereo priors with 3D-GS
to build 3D Gaussians of large-scale scenes from sparse-
view & pose-free images in less than 1 minute. Specifi-
cally, InstantSplat comprises a Coarse Geometric Initial-
ization (CGI) module that swiftly establishes a preliminary

scene structure and camera parameters across all train-
ing views, utilizing globally-aligned 3D point maps de-
rived from a pre-trained dense stereo pipeline. This is fol-
lowed by the Fast 3D-Gaussian Optimization (F-3DGO)
module, which jointly optimizes the 3D Gaussian attributes
and the initialized poses with pose regularization. Experi-
ments conducted on the large-scale outdoor Tanks & Tem-
ples datasets demonstrate that InstantSplat significantly im-
proves SSIM (by 32%) while concurrently reducing Abso-
lute Trajectory Error (ATE) by 80%. These establish In-
stantSplat as a viable solution for scenarios involving pose-
free and sparse-view conditions. Project page: https:
//instantsplat.github.io/.

1. Introduction

Novel-view synthesis (NVS) renders new images from un-
seen viewpoints of a scene based on a specific set of input
images. Capturing viewpoints in a “casual” manner, espe-
cially with a limited number of shots (a.k.a. sparse-view),
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is pivotal for scaling up 3D content creation, digital twin
construction, and augmented reality applications.

Although recent advancements [10, 17, 20, 27] have
shown notable progress in sparse-view synthesis (SVS).
However, the sparse input data collected does not suffi-
ciently cover the scene, preventing Structure from Mo-
tion (SfM) pipelines like COLMAP [19] from estimat-
ing accurate camera parameters. Previous research in
SVS [10, 17] typically assumes precise camera poses even
in sparse-view scenarios by leveraging all dense views for
pre-computation, an assumption that is rarely valid. On
the other hand, another line of research explores pose-free
settings using techniques such as Neural Radiance Field
(NeRF) or 3D Gaussian Splatting (3D-GS), exemplified by
Nope-NeRF [5] and CF-3DGS [9]. These approaches pre-
sume dense data coverage (often from video sequences), an
assumption that may not be viable in “casual” scenarios.

In this paper, we introduce a holistic solution to uncon-
strained sparse-view synthesis that obviates the need for
accurately pre-computed camera intrinsics and extrinsics.
We present InstantSplat, a framework that unifies the ex-
plicit 3D Gaussian representation with pose priors obtained
from an end-to-end dense stereo model—DUSt3R [21].
DUSt3R facilitates the acquisition of initial and coarse
scene geometry from predicted and globally aligned point
maps of sparse views and enables efficient camera infor-
mation and pose retrieval. Following this, fast 3D Gaus-
sians adaptations is established to jointly optimize 3D Gaus-
sian attributes and camera parameters. By merely adjusting
Gaussian attributes—eschewing complex adaptive density
control—the reconstruction process for large-scale scenes
can be completed in under one minute on a modern GPU
(Nvidia A100). Experiments on two large-scale outdoor
datasets: Tanks & Temples [13] and MVImgNet [29], fea-
turing sampled sparse views. Our evaluations, demon-
strate InstantSplat remarkably surpasses previous pose-free
method: the SSIM is boosted from 0.68 to 0.89, a 32% im-
provement, and the ATE is reduced from 0.055 to 0.011,
while significantly accelerating the optimization (from ∼2
hours to approximately 1 minute) than Nope-NeRF [5].

2. Related Works
Novel view synthesis aims to render unseen views of an
object or scene from a set of images [1, 15]. Neural Ra-
diance Fields (NeRF)[16], employs Multilayer Perceptrons
to represent 3D scenes. Subsequent works [2–4, 6, 12, 26]
improve rendering quality or the efficiency. The recent 3D
Gaussian Splatting(3D-GS) [12] uses anisotropic 3D Gaus-
sians [32] to depict radiance fields which shows consider-
able success in rapidly reconstructing complex real-world
scenes with high quality.

NeRFs and 3D-GS require over a hundred images
as input and utilize preprocessing software, such as
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Figure 2. Overall Framework of InstantSplat. Starting with
sparse, unposed images, the Coarse Geometric Initialization (left)
rapidly predicts global aligned point clouds and initializes poses
(20.6 seconds). Then the Fast 3D-Gaussian Optimization (right)
leverages this initialization to conduct streamlined optimizations
of 3D Gaussians and camera parameters (16.67 seconds).

COLMAP [19], to compute camera intrinsics and extrin-
sics. The dense coverage of the capture images significantly
limits practical applications. Works in reducing the view
number requirements [8, 10, 17, 20, 24, 25, 27, 27, 28, 31]
adopt either geometric regularizations or generative pri-
ors to preserve the rendering quality. However, these
methods still require known ground-truth camera poses, a
challenging prerequisite as the commonly used Structure-
from-Motion (SfM) algorithms often fail with sparse in-
puts due to insufficient image correspondences. Several
works [5, 7, 9, 11, 11, 14, 23] explore either utilize coarse-
to-fine paradigm or utilizing monocular depth priors to opti-
mize the camera parameters. But these works require dense
multi-view coverage (e.g., video sequences).

3. Method

3.1. Coarse Geometric Initialization

Recovering Camera Intrinsics. We can have the
1:1 mapping from the pixel lattice to pointmap where
we can build the mapping from 2D to the camera
coordinate system. By utilizing Weiszfeld algo-
rithm [18], we obtain the per-camera focal: f∗ =

argminf
∑W

i=0

∑H
j=0 O

i,j
∥∥∥(i′, j′)− f (P i,j,0,P i,j,1)

P i,j,2

∥∥∥,

where i′ = i − W
2 and j′ = j − H

2 denote centered
pixel indices. Assuming a single-camera setup akin to
COLMAP’s methodology, we average the focal length
calculations to obtain a robust estimate: f̄ = 1

N

∑N
i=1 f

∗
i .

The resulting f̄ represents the computed focal length that is
utilized in subsequent processes.

Pair-wise to Globally Aligned Poses. Scaling from two-
view to all views requires the alignment of the scale. We
first construct a complete connectivity graph of all the N
input views, and convert the initially predicted point map
{(P i ∈ RH×W×3)}Ni=1 to be globally aligned one {(P̃ i ∈
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RH×W×3)}Ni=1, by updating the point maps using trans-
formation matrix, and a scale factor (refer more details
in DUSt3R [21]). The post-processing yields a globally
aligned point cloud but the optimized poses are still sub-
optimal caused by the sub-optimal point maps predictions.

3.2. Fast 3D-Gaussian Optimization

3D Gaussian Initializations. To refine the initial camera
poses and 3D geometry, we propose to utilize the optimiza-
tion of the 3D Gaussians, and utilize photometric signals
to jointly tune them into a more optimal solution. As we
have per-pixel wise dense initialization, we propose to uti-
lize the globally aligned point map as preliminary scene ge-
ometry, replacing the sparse SfM point set for 3D-GS ini-
tialization [12]. The ample primitives to encapsulate the
scene’s surfaces, minimizes the need for manual optimiza-
tion rules (adaptive density control in 3DGS [12]), and thus
requiring fewer steps. Specifically, we execute 1k iterations
optimization on the initialized 3D Gaussians, omitting the
densification, splitting, and opacity reset processes, thereby
streamlining and simplifying the optimization procedure.

Jointly Optimizing Poses and Attributes. We mitigate
the geometric and pose inaccuracy when transitioning from
two-view to multi-view scenarios: we propose to simultane-
ous optimize the camera extrinsics and the 3D model using
a sparse set of training views. Additionally, we introduce a
constraint to ensure that the optimized poses do not deviate
excessively from their initial positions:

S∗,T ∗ = argmin
S,T

∑
v∈N

HW∑
i=1

∥∥∥C̃i

v(S,T )−Ci
v(S,T )

∥∥∥
+λ · ∥T − T0∥ .

the S represents the set of 3D Gaussians, T denotes the
camera extrinsics for a specific view, T0 signifies the initial
extrinsics obtained from global alignment, C is the render-
ing function, and the term λ is introduced to strike a balance
between photometric loss and the steps involved in camera
optimization.
3.3. Aligning Camera Poses on Test Views

Test camera poses are unknown in the pose-free setting.
Follow NeRFmm [23], we freeze the well-trained 3DGS
model and optimize the camera poses for test views by
matching the test images with the 3D model.

4. Experiments
4.1. Experimental Setup

Results are averaged on five scenes from the Tanks and
Temples datasets [13], and extracted six outdoor scenes
from the MVImgNet datasets. 12 uniformly sampled train-
ing and testing views are used. All methods are trained

and tested under resolution of 512×288. Absolute Tra-
jectory Error (ATE), the Relative Pose Error (RPE) are for
pose accuracy, PSNR, Structural Similarity Index Measure
(SSIM)[22], and the Learned Perceptual Image Patch Simi-
larity (LPIPS)[30] are for rendering quality.

4.2. Experimental Results

Quantitative and Qualitative Results Quantitative re-
sults of novel view synthesis and pose estimation on Tanks
and Temples datasets, and MVImgNet, are summarized in
Tab. 1. The pose metrics reveal inaccurate pose estimations
attribute to sparse observations in these baseline methods.
Specifically, Nope-NeRF [5] utilizes MLPs and achieves
notable accuracy in rendering quality and pose estimation.
However, it tends to produce overly blurred renderings (See
Fig. 3) due to the heavy constraints from its geometric field
and demonstrates slow training (∼2 hours) and inference
speeds (∼30 seconds for one frame). CF-3DGS [9], em-
ploying Gaussian Splatting, delivers good rendering quality
but is prone to artifacts when changing viewpoints, a con-
sequence of the complex optimization process with error-
neous pose predictions. Additionally, CF-3DGS requires
more complex optimization, incorporating both local and
global optimization stages, along with adaptive density con-
trol and opacity reset policies.

4.3. Ablation Studies

Effect of Averaging Focal Length and Joint Optimiza-
tion. Experiments in Tab. 2 indicates that independent cal-
culation of camera focal length results in a diversity of out-
comes, adversely affecting rendering quality and pose es-
timation accuracy. The globally alignment algorithm does
not yield pixel-wise accurate extrinsics, necessitate the joint
optimization of camera parameters and Gaussian attributes.
Effect of View Number and Poses from COLMAP.
We conduct experiments with varying numbers of training
views. As illustrated in Tab 3, InstantSplat consistently out-
performs CF-3DGS [9], another 3D Gaussian-based pose-
free framework. Furthermore, COLMAP with vanilla 3D-
GS also performs sub-optimal, caused by the problem that
recover the entire 3D scene from sparse point cloud and
training images.

5. Conclusion
We introduced InstantSplat, designed to reconstruct scene
efficiently from sparse-view unposed images. Our approach
leverages dense stereo priors for coarse scene initialization,
offering preliminary estimates of the 3D geometry and cam-
era parameters. To further refine these scene attributes and
camera parameters, a rapid 3D Gaussian Optimization strat-
egy that jointly optimizes the 3D Gaussian attributes and
camera extrinsics. This results in an efficient pipeline capa-
ble of reconstructing the 3D scene from unposed images
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Ours NeRFmm Nope-NeRF CF-3DGS Ground-Truth
Figure 3. Visual Comparisons. We conducted a comparative analysis between InstantSplat and various baseline methodologies. It was
noted that InstantSplat adeptly preserves a majority of the scene details, avoiding the artifacts typically induced by inaccurately estimated
camera poses, a common issue in CF-3DGS [9]. Moreover, our streamlined framework negates the necessity for strong regularization
during training, unlike Nope-NeRF, thereby yielding sharper image details. Additionally, NeRFmm is prone to introducing artifacts during
viewpoint transitions, attributable to imprecise joint optimization processes.

Datasets Ours CF-3DGS Nope-NeRF NeRFmm
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Rendering
Metrics

Tanks and Temples 0.89 28.94 0.12 0.60 18.29 0.34 0.64 22.48 0.44 0.51 18.28 0.53
MVImgNet 0.79 25.19 0.19 0.38 16.63 0.45 0.45 19.14 0.55 0.27 13.88 0.66

RPEt ↓ RPEr ↓ ATE↓ RPEt ↓ RPEr ↓ ATE↓ RPEt ↓ RPEr ↓ ATE↓ RPEt ↓ RPEr ↓ ATE↓
Pose

Metrics
Tanks and Temples 0.472 0.110 0.011 5.797 2.175 0.070 10.279 5.303 0.055 15.026 4.701 0.125

MVImgNet 0.317 0.279 0.004 10.119 9.083 0.106 12.501 13.700 0.142 15.014 11.281 0.132

Table 1. Quantitative Evaluations. Our method renders significantly clearer details (by LPIPS) compared to other baseline methods,
devoid of artifacts typically associated with noisy pose estimation (e.g., CF-3DGS [9], NeRFmm [23]). Furthermore, Nope-NeRF’s
regularization approach during training, which involves multiple constraints, restricts the MLPs’ ability to accurately reconstruct scene
details. Results are on both 12 training and testing views.

Scenes No Averaging Focal
PSNR↑ SSIM↑ RPEt ↓ RPEr ↓

No Focal Avg. 27.18 0.8552 1.053 0.135
No Joint Opt. 26.82 0.8547 0.677 0.173
Full Model 28.58 0.8900 0.472 0.110

Table 2. Ablation Study on the Impact of Averaging Focal Length
and Jointly Optimization.

in under one minute. Significantly, our method demon-
strates superior rendering quality and pose estimation ac-
curacy compared to existing methodologies, underscoring
its effectiveness in handling sparse-view data.
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